HAZ softening behavior of strain-hardened Al-6.7Mg alloy welded by GMAW and pulsed GMAW processes

HAZ softening behavior of strain-hardened Al-6.7Mg alloy welded by GMAW and pulsed GMAW processes Gas metal arc welding (GMAW) process was used to weld plates of strain-hardened Al-6.7Mg alloy. It was observed that HAZ softening issue occurred extensively for the current material using the GMAW process. So, as a solution, pulsed current was employed and the plates were welded by pulsed GMAW (PGMAW) process. The effects of peak current (93, 120, 140, and 160 A) and pulse frequency (0.5, 2.0, and 5.0 Hz) on the strength of the weldments were investigated. For high peak currents (160 A), catastrophic defects were formed in the weld metal. It was observed that for the lowest pulse frequency (0.5 Hz), increasing the peak current increased the weld strength. The peak current did not change the strength for higher frequencies (2.0 and 5.0 Hz). Furthermore, increasing the frequency from 0.5 to 2.0 Hz for peak currents of 93 and 120 A led to strength improvement. For peak current of 140 A, frequency changing was ineffective. The overall enhancement in the strength of welds and reduction of HAZ softening by employing pulsed current offers a promising opportunity for further application of GMAW process with controlled heat input for welding of strain-hardened Al-6.7Mg alloy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

HAZ softening behavior of strain-hardened Al-6.7Mg alloy welded by GMAW and pulsed GMAW processes

Loading next page...
 
/lp/springer_journal/haz-softening-behavior-of-strain-hardened-al-6-7mg-alloy-welded-by-DgYdTZnM8v
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0318-x
Publisher site
See Article on Publisher Site

Abstract

Gas metal arc welding (GMAW) process was used to weld plates of strain-hardened Al-6.7Mg alloy. It was observed that HAZ softening issue occurred extensively for the current material using the GMAW process. So, as a solution, pulsed current was employed and the plates were welded by pulsed GMAW (PGMAW) process. The effects of peak current (93, 120, 140, and 160 A) and pulse frequency (0.5, 2.0, and 5.0 Hz) on the strength of the weldments were investigated. For high peak currents (160 A), catastrophic defects were formed in the weld metal. It was observed that for the lowest pulse frequency (0.5 Hz), increasing the peak current increased the weld strength. The peak current did not change the strength for higher frequencies (2.0 and 5.0 Hz). Furthermore, increasing the frequency from 0.5 to 2.0 Hz for peak currents of 93 and 120 A led to strength improvement. For peak current of 140 A, frequency changing was ineffective. The overall enhancement in the strength of welds and reduction of HAZ softening by employing pulsed current offers a promising opportunity for further application of GMAW process with controlled heat input for welding of strain-hardened Al-6.7Mg alloy.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Mar 30, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off