Hansch’s analysis application to chalcone synthesis by Claisen–Schmidt reaction based in DFT methodology

Hansch’s analysis application to chalcone synthesis by Claisen–Schmidt reaction based in DFT... Chalcones are bioactive compounds obtained from either natural sources or synthetic procedures and widely used due to their several biological properties. The most common experimental methodology in obtaining these compounds is Claisen–Schmidt reaction, which is a particular type of aldolic condensation. In this work, we have synthesized 23 chalcones and by density functional theory (DFT) calculation, we have studied the difference in reactivity of the several benzaldehydes and their effects on the yield of this reaction. From molecular orbital descriptors were obtained two quantitative structure–reactivity relationship (QSRR) models based on Hansch’s analysis. The results of this study showed that, for the most benzaldehydes (15 of 23 compounds), their reactivity was correlated with LUMO energy and global Electrophilicity Index (ω) values, which are determined in the first step of Claisen–Schmidt condensation mechanism (nucleophilic addition). Likewise, for the smallest group of benzaldehydes, their reactivity was related to their HOMO and ΔL − H (LUMO − HOMO) energies, which were determined in the second step of the mechanism (trans-elimination). This is the first report of a QSRR model analyzing the yield of chalcone synthesis based on DFT methodology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chemical Papers Springer Journals

Hansch’s analysis application to chalcone synthesis by Claisen–Schmidt reaction based in DFT methodology

Loading next page...
 
/lp/springer_journal/hansch-s-analysis-application-to-chalcone-synthesis-by-claisen-schmidt-Kc1pdHizwA
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Institute of Chemistry, Slovak Academy of Sciences
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering; Biochemistry, general; Medicinal Chemistry; Materials Science, general; Biotechnology
ISSN
0366-6352
eISSN
1336-9075
D.O.I.
10.1007/s11696-017-0316-3
Publisher site
See Article on Publisher Site

Abstract

Chalcones are bioactive compounds obtained from either natural sources or synthetic procedures and widely used due to their several biological properties. The most common experimental methodology in obtaining these compounds is Claisen–Schmidt reaction, which is a particular type of aldolic condensation. In this work, we have synthesized 23 chalcones and by density functional theory (DFT) calculation, we have studied the difference in reactivity of the several benzaldehydes and their effects on the yield of this reaction. From molecular orbital descriptors were obtained two quantitative structure–reactivity relationship (QSRR) models based on Hansch’s analysis. The results of this study showed that, for the most benzaldehydes (15 of 23 compounds), their reactivity was correlated with LUMO energy and global Electrophilicity Index (ω) values, which are determined in the first step of Claisen–Schmidt condensation mechanism (nucleophilic addition). Likewise, for the smallest group of benzaldehydes, their reactivity was related to their HOMO and ΔL − H (LUMO − HOMO) energies, which were determined in the second step of the mechanism (trans-elimination). This is the first report of a QSRR model analyzing the yield of chalcone synthesis based on DFT methodology.

Journal

Chemical PapersSpringer Journals

Published: Oct 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off