Halotolerant bacteria of the genus Arthrobacter degrading polycyclic aromatic hydrocarbons

Halotolerant bacteria of the genus Arthrobacter degrading polycyclic aromatic hydrocarbons Eight strains of bacteria capable of degrading polycyclic aromatic hydrocarbons have been isolated from soils and bottom sediments sampled in the region of Verkhnekamskoe potash deposit (Berezniki, Perm krai) and classified with the genus Arthrobacter on the basis of phylogenetic analysis (16S rRNA genes) and morphological and chemotaxonomic characters. According to the results of 16S rDNA sequence alignment, strains B905, SMB11, SMB145, SF27, and DF14 show the highest sequence homology to the type strain of A. crystallopoietes (99.7%), and strain SN17, to the type strain of A. arilaitensis (99.8%). The isolated strains are capable of growing on naphthalene and phenanthrene (as the sole sources of carbon and energy) in the presence of 60 mg/l NaCl. Their cells contain large plasmids ranging in size from 85 to 130 kb. Plasmid elimination from Arthrobacter sp. SF27 has proved to result in the loss of capacity for growing on naphthalene and phenanthrene, suggesting a plasmid localization of genes responsible for degradation of these compounds. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Ecology Springer Journals

Halotolerant bacteria of the genus Arthrobacter degrading polycyclic aromatic hydrocarbons

Loading next page...
 
/lp/springer_journal/halotolerant-bacteria-of-the-genus-arthrobacter-degrading-polycyclic-Ly53yEmVuV
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Environment, general; Ecology
ISSN
1067-4136
eISSN
1608-3334
D.O.I.
10.1134/S1067413611060130
Publisher site
See Article on Publisher Site

Abstract

Eight strains of bacteria capable of degrading polycyclic aromatic hydrocarbons have been isolated from soils and bottom sediments sampled in the region of Verkhnekamskoe potash deposit (Berezniki, Perm krai) and classified with the genus Arthrobacter on the basis of phylogenetic analysis (16S rRNA genes) and morphological and chemotaxonomic characters. According to the results of 16S rDNA sequence alignment, strains B905, SMB11, SMB145, SF27, and DF14 show the highest sequence homology to the type strain of A. crystallopoietes (99.7%), and strain SN17, to the type strain of A. arilaitensis (99.8%). The isolated strains are capable of growing on naphthalene and phenanthrene (as the sole sources of carbon and energy) in the presence of 60 mg/l NaCl. Their cells contain large plasmids ranging in size from 85 to 130 kb. Plasmid elimination from Arthrobacter sp. SF27 has proved to result in the loss of capacity for growing on naphthalene and phenanthrene, suggesting a plasmid localization of genes responsible for degradation of these compounds.

Journal

Russian Journal of EcologySpringer Journals

Published: Oct 25, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off