HALO flight test with instrumented under-wing stores for aeroelastic and load measurements in the DLR project iLOADS

HALO flight test with instrumented under-wing stores for aeroelastic and load measurements in the... HALO (High Altitude and Long Range Research Aircraft), the atmospheric research aircraft of the German Aerospace Center (DLR), can be equipped with under-wing stores at different wing positions to transport scientific instruments for atmospheric research. The particle measurement system (PMS) carrier is such an external store which can carry three instruments at the same time per wing. Any modifications on an aircraft must be tested numerically and experimentally to ensure the structural integrity of the aircraft for all flight conditions. Load and flutter analyses can be validated with flight test data. For flight test, the aircraft and the under-wing stores of HALO must be equipped with acceleration and strain sensors. To reduce flight test time it is necessary to make quick decisions during the flight test. Therefore the DLR Institute of Aeroelasticity in Göttingen has developed a real-time analysis procedure for online identification of modal parameters like eigenfrequencies, damping ratios and mode shapes. These parameters vary with flight conditions and are necessary to analyse the aeroelastic stability of the system. The department of loads analysis and aeroelastic design and the department of structural dynamics and system identification have tested the newly developed procedure in 14 flight hours on the HALO. A network of three distributed data acquisition modules enabled the recording of the flight test instrumentation with 51 accelerometers and 16 strain gauge bridges. The measured data were distributed online on several computers where the newly developed software was implemented, allowing an instantaneous analysis of the structural dynamics behaviour and loads in flight. This paper provides an overview of the conducted flight vibration tests with HALO. It also shows the capability of the newly developed online monitoring system for aeroelastic identification. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png CEAS Aeronautical Journal Springer Journals

HALO flight test with instrumented under-wing stores for aeroelastic and load measurements in the DLR project iLOADS

Loading next page...
 
/lp/springer_journal/halo-flight-test-with-instrumented-under-wing-stores-for-aeroelastic-Mcib8jpSCB
Publisher
Springer Vienna
Copyright
Copyright © 2018 by The Author(s)
Subject
Engineering; Aerospace Technology and Astronautics
ISSN
1869-5582
eISSN
1869-5590
D.O.I.
10.1007/s13272-018-0294-3
Publisher site
See Article on Publisher Site

Abstract

HALO (High Altitude and Long Range Research Aircraft), the atmospheric research aircraft of the German Aerospace Center (DLR), can be equipped with under-wing stores at different wing positions to transport scientific instruments for atmospheric research. The particle measurement system (PMS) carrier is such an external store which can carry three instruments at the same time per wing. Any modifications on an aircraft must be tested numerically and experimentally to ensure the structural integrity of the aircraft for all flight conditions. Load and flutter analyses can be validated with flight test data. For flight test, the aircraft and the under-wing stores of HALO must be equipped with acceleration and strain sensors. To reduce flight test time it is necessary to make quick decisions during the flight test. Therefore the DLR Institute of Aeroelasticity in Göttingen has developed a real-time analysis procedure for online identification of modal parameters like eigenfrequencies, damping ratios and mode shapes. These parameters vary with flight conditions and are necessary to analyse the aeroelastic stability of the system. The department of loads analysis and aeroelastic design and the department of structural dynamics and system identification have tested the newly developed procedure in 14 flight hours on the HALO. A network of three distributed data acquisition modules enabled the recording of the flight test instrumentation with 51 accelerometers and 16 strain gauge bridges. The measured data were distributed online on several computers where the newly developed software was implemented, allowing an instantaneous analysis of the structural dynamics behaviour and loads in flight. This paper provides an overview of the conducted flight vibration tests with HALO. It also shows the capability of the newly developed online monitoring system for aeroelastic identification.

Journal

CEAS Aeronautical JournalSpringer Journals

Published: Feb 27, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off