Ha-VP39 binding to actin and the influence of F-actin on assembly of progeny virions

Ha-VP39 binding to actin and the influence of F-actin on assembly of progeny virions We present evidence that actin is necessary for the successful assembly of HaNPV virions. Purified nucleocapsid protein Ha-VP39 of Heliothis armigera nuclear polyhedrosis virus (HaNPV) was found to be able to bind to actin in vitro without assistance, as demonstrated by Western blot and isothermal titration calorimeter. ΔH and binding constants (K) detected by isothermal titration calorimeter strongly suggested that Ha-VP39 first binds actin to seed the formation of hexamer complex of actin, and the hexamers then link to each other to form filaments, and the filaments finally twist into cable structures. The proliferation of HaNPV was completely inhibited in Hz-AM1 cells cultivated in the medium containing 0.5 µg/ml cytochalasin D (CD) to prevent polymerization of actin, while its yield was reduced to 10 −4 in the presence of 0.1 µg/ml CD. Actin concentration and the viral DNA synthesis were not significantly affected by CD even though the progeny virions assembled in the CD treated cells were morphologically different from normal ones and resulted in fewer plaques in plaque assay http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Ha-VP39 binding to actin and the influence of F-actin on assembly of progeny virions

Loading next page...
 
/lp/springer_journal/ha-vp39-binding-to-actin-and-the-influence-of-f-actin-on-assembly-of-0hpzci8FG0
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag/Wien
Subject
LifeSciences
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-004-0361-4
Publisher site
See Article on Publisher Site

Abstract

We present evidence that actin is necessary for the successful assembly of HaNPV virions. Purified nucleocapsid protein Ha-VP39 of Heliothis armigera nuclear polyhedrosis virus (HaNPV) was found to be able to bind to actin in vitro without assistance, as demonstrated by Western blot and isothermal titration calorimeter. ΔH and binding constants (K) detected by isothermal titration calorimeter strongly suggested that Ha-VP39 first binds actin to seed the formation of hexamer complex of actin, and the hexamers then link to each other to form filaments, and the filaments finally twist into cable structures. The proliferation of HaNPV was completely inhibited in Hz-AM1 cells cultivated in the medium containing 0.5 µg/ml cytochalasin D (CD) to prevent polymerization of actin, while its yield was reduced to 10 −4 in the presence of 0.1 µg/ml CD. Actin concentration and the viral DNA synthesis were not significantly affected by CD even though the progeny virions assembled in the CD treated cells were morphologically different from normal ones and resulted in fewer plaques in plaque assay

Journal

Archives of VirologySpringer Journals

Published: Nov 1, 2004

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off