Hölder Continuity of Adjoint States and Optimal Controls for State Constrained Problems

Hölder Continuity of Adjoint States and Optimal Controls for State Constrained Problems We investigate Hölder regularity of adjoint states and optimal controls for a Bolza problem under state constraints. We start by considering any optimal solution satisfying the constrained maximum principle in its normal form and we show that whenever the associated Hamiltonian function is smooth enough and has some monotonicity properties in the directions normal to the constraints, then both the adjoint state and optimal trajectory enjoy Hölder type regularity. More precisely, we prove that if the state constraints are smooth, then the adjoint state and the derivative of the optimal trajectory are Hölder continuous, while they have the two sided lower Hölder continuity property for less regular constraints. Finally, we provide sufficient conditions for Hölder type regularity of optimal controls. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Hölder Continuity of Adjoint States and Optimal Controls for State Constrained Problems

Loading next page...
 
/lp/springer_journal/h-lder-continuity-of-adjoint-states-and-optimal-controls-for-state-3F0NUMJdi8
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Mathematics; Numerical and Computational Methods ; Mathematical Methods in Physics; Mathematical and Computational Physics; Systems Theory, Control; Calculus of Variations and Optimal Control; Optimization
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-007-9015-8
Publisher site
See Article on Publisher Site

Abstract

We investigate Hölder regularity of adjoint states and optimal controls for a Bolza problem under state constraints. We start by considering any optimal solution satisfying the constrained maximum principle in its normal form and we show that whenever the associated Hamiltonian function is smooth enough and has some monotonicity properties in the directions normal to the constraints, then both the adjoint state and optimal trajectory enjoy Hölder type regularity. More precisely, we prove that if the state constraints are smooth, then the adjoint state and the derivative of the optimal trajectory are Hölder continuous, while they have the two sided lower Hölder continuity property for less regular constraints. Finally, we provide sufficient conditions for Hölder type regularity of optimal controls.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Feb 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off