Guided perturbation: towards private and accurate mining

Guided perturbation: towards private and accurate mining There have been two methods for privacy- preserving data mining: the perturbation approach and the cryptographic approach. The perturbation approach is typically very efficient, but it suffers from a tradeoff between accuracy and privacy. In contrast, the cryptographic approach usually maintains accuracy, but it is more expensive in computation and communication overhead. We propose a novel perturbation method, called guided perturbation . Specifically, we focus on a central problem of privacy-preserving data mining—the secure scalar product problem of vertically partitioned data, and give a solution based on guided perturbation, with good, provable privacy guarantee. Our solution achieves accuracy comparable to the cryptographic solutions, while keeping the efficiency of perturbation solutions. Our experimental results show that it can be more than one hundred times faster than a typical cryptographic solution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Guided perturbation: towards private and accurate mining

Loading next page...
 
/lp/springer_journal/guided-perturbation-towards-private-and-accurate-mining-yl5KYRveac
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-007-0056-z
Publisher site
See Article on Publisher Site

Abstract

There have been two methods for privacy- preserving data mining: the perturbation approach and the cryptographic approach. The perturbation approach is typically very efficient, but it suffers from a tradeoff between accuracy and privacy. In contrast, the cryptographic approach usually maintains accuracy, but it is more expensive in computation and communication overhead. We propose a novel perturbation method, called guided perturbation . Specifically, we focus on a central problem of privacy-preserving data mining—the secure scalar product problem of vertically partitioned data, and give a solution based on guided perturbation, with good, provable privacy guarantee. Our solution achieves accuracy comparable to the cryptographic solutions, while keeping the efficiency of perturbation solutions. Our experimental results show that it can be more than one hundred times faster than a typical cryptographic solution.

Journal

The VLDB JournalSpringer Journals

Published: Aug 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off