Guanine tetrad and palindromic sequence play critical roles in the RNA dimerization of bovine foamy virus

Guanine tetrad and palindromic sequence play critical roles in the RNA dimerization of bovine... Retroviruses are unique in having a diploid genome. However, the RNA sequences and structures that link the two RNA molecules are different. To identify the dimer linkage site of bovine foamy virus (BFV), complementary DNAs were used to interfere with RNA dimerization of BFV. We found that two sites, designated SI and SII, within a 53-base RNA fragment, were essential for BFV dimerization in vitro . SI consists of a potential guanine tetrad (GGGGC), which overlaps the primer binding site, while SII contains 15 nucleotides including a palindromic sequence, UCCCUAGGGA. Masking either of the sites completely abolished RNA dimer formation. Furthermore, a deletion of SII was introduced into a BFV infectious DNA clone; we found that deletion of SII significantly increased expression of BFV transactivator Borf-1. Interestingly, we also found that this deletion abolished viral infectivity. These results suggest that dimerization might play a unique role in the BFV life cycle. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Guanine tetrad and palindromic sequence play critical roles in the RNA dimerization of bovine foamy virus

Loading next page...
 
/lp/springer_journal/guanine-tetrad-and-palindromic-sequence-play-critical-roles-in-the-rna-8cIDkGXZcp
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-007-1047-5
Publisher site
See Article on Publisher Site

Abstract

Retroviruses are unique in having a diploid genome. However, the RNA sequences and structures that link the two RNA molecules are different. To identify the dimer linkage site of bovine foamy virus (BFV), complementary DNAs were used to interfere with RNA dimerization of BFV. We found that two sites, designated SI and SII, within a 53-base RNA fragment, were essential for BFV dimerization in vitro . SI consists of a potential guanine tetrad (GGGGC), which overlaps the primer binding site, while SII contains 15 nucleotides including a palindromic sequence, UCCCUAGGGA. Masking either of the sites completely abolished RNA dimer formation. Furthermore, a deletion of SII was introduced into a BFV infectious DNA clone; we found that deletion of SII significantly increased expression of BFV transactivator Borf-1. Interestingly, we also found that this deletion abolished viral infectivity. These results suggest that dimerization might play a unique role in the BFV life cycle.

Journal

Archives of VirologySpringer Journals

Published: Dec 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off