Growth kinetics and withanolide production in novel transformed roots of Withania somnifera and measurement of their antioxidant potential using chemiluminescence

Growth kinetics and withanolide production in novel transformed roots of Withania somnifera and... Markedly increased withanolide content was found in transformed roots (TR) of Withania somnifera germplasm grown in low mineral minimal media and withanolides showed high antioxidant potential when analysed using acidic potassium permanganate chemiluminescence. Transformation frequency of explants infected with Agrobacterium rhizogenes strain A4 varied between the three germplasms tested with the highest observed as 75 ± 0.9. Transformed root production was explant specific with leaves being the most productive among the different explants used. Withanolides, namely withaferin A, withanolide A, withanolide B and 12-deoxywithastramonolide were detected in TR cultures and differences in their content were found between germplasms. The highest concentrations of secondary metabolites were found in 4-week-old cultures and concentrations declined by the 8th and 12th week of culture. In 4-week-old cultures, the biomass of TR cultures was 4.5 fold higher than their respective non-transformed roots (NTR). Withaferin A was found in TR at levels that were 28–34 times higher than that found in NTR. A rapid method for the determination of the antioxidant potential of W. somnifera TR extracts was developed using post-column acidic potassium permanganate chemiluminescence (APPC) detection. The APPC chromatographic peaks for extract constituents showed strong alignment with those found for ultraviolet absorbance detection. The methods developed in this study for TR culture establishment and the use of a fast and sensitive way for the qualitative and quantitative determination of the antioxidant activity of their metabolites provides a new platform that will have use for similar studies in other species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Cell, Tissue and Organ Culture Springer Journals

Growth kinetics and withanolide production in novel transformed roots of Withania somnifera and measurement of their antioxidant potential using chemiluminescence

Loading next page...
 
/lp/springer_journal/growth-kinetics-and-withanolide-production-in-novel-transformed-roots-Azi2GxVWCY
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Life Sciences; Plant Sciences; Plant Physiology; Plant Genetics and Genomics; Plant Pathology
ISSN
0167-6857
eISSN
1573-5044
D.O.I.
10.1007/s11240-017-1344-y
Publisher site
See Article on Publisher Site

Abstract

Markedly increased withanolide content was found in transformed roots (TR) of Withania somnifera germplasm grown in low mineral minimal media and withanolides showed high antioxidant potential when analysed using acidic potassium permanganate chemiluminescence. Transformation frequency of explants infected with Agrobacterium rhizogenes strain A4 varied between the three germplasms tested with the highest observed as 75 ± 0.9. Transformed root production was explant specific with leaves being the most productive among the different explants used. Withanolides, namely withaferin A, withanolide A, withanolide B and 12-deoxywithastramonolide were detected in TR cultures and differences in their content were found between germplasms. The highest concentrations of secondary metabolites were found in 4-week-old cultures and concentrations declined by the 8th and 12th week of culture. In 4-week-old cultures, the biomass of TR cultures was 4.5 fold higher than their respective non-transformed roots (NTR). Withaferin A was found in TR at levels that were 28–34 times higher than that found in NTR. A rapid method for the determination of the antioxidant potential of W. somnifera TR extracts was developed using post-column acidic potassium permanganate chemiluminescence (APPC) detection. The APPC chromatographic peaks for extract constituents showed strong alignment with those found for ultraviolet absorbance detection. The methods developed in this study for TR culture establishment and the use of a fast and sensitive way for the qualitative and quantitative determination of the antioxidant activity of their metabolites provides a new platform that will have use for similar studies in other species.

Journal

Plant Cell, Tissue and Organ CultureSpringer Journals

Published: Nov 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off