Ground truth evaluation of computer vision based 3D reconstruction of synthesized and real plant images

Ground truth evaluation of computer vision based 3D reconstruction of synthesized and real plant... There is an increasing interest in using 3D computer vision in precision agriculture. This calls for better quantitative evaluation and understanding of computer vision methods. This paper proposes a test framework using ray traced crop scenes that allows in-depth analysis of algorithm performance and finds the optimal hardware and light source setup before investing in expensive equipment and field experiments. It was expected to be a valuable tool to structure the otherwise incomprehensibly large information space and to see relationships between parameter configurations and crop features. Images of real plants with similar structural categories were annotated manually for comparison in order to validate the performance results on the synthesised images. The results showed substantial correlation between synthesized and real plants, but only when all error sources were accounted for in the simulation. However, there were exceptions where there were structural differences between the virtual plant and the real plant that were unaccounted for by its category. The test framework was evaluated to be a valuable tool to uncover information from complex data structures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Ground truth evaluation of computer vision based 3D reconstruction of synthesized and real plant images

Loading next page...
 
/lp/springer_journal/ground-truth-evaluation-of-computer-vision-based-3d-reconstruction-of-3zS8bUsgc1
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-006-9028-3
Publisher site
See Article on Publisher Site

Abstract

There is an increasing interest in using 3D computer vision in precision agriculture. This calls for better quantitative evaluation and understanding of computer vision methods. This paper proposes a test framework using ray traced crop scenes that allows in-depth analysis of algorithm performance and finds the optimal hardware and light source setup before investing in expensive equipment and field experiments. It was expected to be a valuable tool to structure the otherwise incomprehensibly large information space and to see relationships between parameter configurations and crop features. Images of real plants with similar structural categories were annotated manually for comparison in order to validate the performance results on the synthesised images. The results showed substantial correlation between synthesized and real plants, but only when all error sources were accounted for in the simulation. However, there were exceptions where there were structural differences between the virtual plant and the real plant that were unaccounted for by its category. The test framework was evaluated to be a valuable tool to uncover information from complex data structures.

Journal

Precision AgricultureSpringer Journals

Published: Jan 13, 2007

References

  • Robotic weed control system for tomatoes
    Lee, WS; Slaughter, DC; Giles, DK
  • Future directions in precision agriculture
    McBratney, A; Whelan, B; Ancev, T; Bouma, J

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off