Grid-partition index: a hybrid method for nearest-neighbor queries in wireless location-based services

Grid-partition index: a hybrid method for nearest-neighbor queries in wireless location-based... Traditional nearest-neighbor (NN) search is based on two basic indexing approaches: object-based indexing and solution-based indexing. The former is constructed based on the locations of data objects: using some distance heuristics on object locations. The latter is built on a precomputed solution space. Thus, NN queries can be reduced to and processed as simple point queries in this solution space. Both approaches exhibit some disadvantages, especially when employed for wireless data broadcast in mobile computing environments. In this paper, we introduce a new index method, called the grid-partition index , to support NN search in both on-demand access and periodic broadcast modes of mobile computing. The grid-partition index is constructed based on the Voronoi diagram, i.e., the solution space of NN queries. However, it has two distinctive characteristics. First, it divides the solution space into grid cells such that a query point can be efficiently mapped into a grid cell around which the nearest object is located. This significantly reduces the search space. Second, the grid-partition index stores the objects that are potential NNs of any query falling within the cell. The storage of objects, instead of the Voronoi cells, makes the grid-partition index a hybrid of the solution-based and object-based approaches. As a result, it achieves a much more compact representation than the pure solution-based approach and avoids backtracked traversals required in the typical object-based approach, thus realizing the advantages of both approaches. We develop an incremental construction algorithm to address the issue of object update. In addition, we present a cost model to approximate the search cost of different grid partitioning schemes. The performances of the grid-partition index and existing indexes are evaluated using both synthetic and real data. The results show that, overall, the grid-partition index significantly outperforms object-based indexes and solution-based indexes. Furthermore, we extend the grid-partition index to support continuous-nearest-neighbor search. Both algorithms and experimental results are presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Grid-partition index: a hybrid method for nearest-neighbor queries in wireless location-based services

Loading next page...
 
/lp/springer_journal/grid-partition-index-a-hybrid-method-for-nearest-neighbor-queries-in-0fYeqCIEiC
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-004-0146-0
Publisher site
See Article on Publisher Site

Abstract

Traditional nearest-neighbor (NN) search is based on two basic indexing approaches: object-based indexing and solution-based indexing. The former is constructed based on the locations of data objects: using some distance heuristics on object locations. The latter is built on a precomputed solution space. Thus, NN queries can be reduced to and processed as simple point queries in this solution space. Both approaches exhibit some disadvantages, especially when employed for wireless data broadcast in mobile computing environments. In this paper, we introduce a new index method, called the grid-partition index , to support NN search in both on-demand access and periodic broadcast modes of mobile computing. The grid-partition index is constructed based on the Voronoi diagram, i.e., the solution space of NN queries. However, it has two distinctive characteristics. First, it divides the solution space into grid cells such that a query point can be efficiently mapped into a grid cell around which the nearest object is located. This significantly reduces the search space. Second, the grid-partition index stores the objects that are potential NNs of any query falling within the cell. The storage of objects, instead of the Voronoi cells, makes the grid-partition index a hybrid of the solution-based and object-based approaches. As a result, it achieves a much more compact representation than the pure solution-based approach and avoids backtracked traversals required in the typical object-based approach, thus realizing the advantages of both approaches. We develop an incremental construction algorithm to address the issue of object update. In addition, we present a cost model to approximate the search cost of different grid partitioning schemes. The performances of the grid-partition index and existing indexes are evaluated using both synthetic and real data. The results show that, overall, the grid-partition index significantly outperforms object-based indexes and solution-based indexes. Furthermore, we extend the grid-partition index to support continuous-nearest-neighbor search. Both algorithms and experimental results are presented.

Journal

The VLDB JournalSpringer Journals

Published: Jan 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off