Greenhouse effect of the atmosphere and its influence on Earth’s climate (satellite data)

Greenhouse effect of the atmosphere and its influence on Earth’s climate (satellite data) On the basis of the radiation-cloudiness model and the available long-term satellite data, we study the correlations of the greenhouse effect with the surface temperature of air and effective cloudiness equal to the product of the cloud amount by the conditional optical density of the clouds. We deduce the relations of satellite monitoring of the behavior of the anomalies of global air temperature caused by the excess amounts of volcanic products and greenhouse gases (formed as a result combustion of the fossil fuel) in the atmosphere. Realistic estimates of the processes of cooling and warming of the currently existing climate are obtained. Under the condition of preservation of the existing linear trends in the behaviors of the short-and long-wave flows of radiation into the outer space (observed according to satellite data for the last 20 yr), the global temperature in the second part of the current century can increase by 1.6–2.0°C. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

Greenhouse effect of the atmosphere and its influence on Earth’s climate (satellite data)

Loading next page...
 
/lp/springer_journal/greenhouse-effect-of-the-atmosphere-and-its-influence-on-earth-s-nCCEItwgG4
Publisher
Kluwer Academic Publishers-Consultants Bureau
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1007/s11110-006-0036-7
Publisher site
See Article on Publisher Site

Abstract

On the basis of the radiation-cloudiness model and the available long-term satellite data, we study the correlations of the greenhouse effect with the surface temperature of air and effective cloudiness equal to the product of the cloud amount by the conditional optical density of the clouds. We deduce the relations of satellite monitoring of the behavior of the anomalies of global air temperature caused by the excess amounts of volcanic products and greenhouse gases (formed as a result combustion of the fossil fuel) in the atmosphere. Realistic estimates of the processes of cooling and warming of the currently existing climate are obtained. Under the condition of preservation of the existing linear trends in the behaviors of the short-and long-wave flows of radiation into the outer space (observed according to satellite data for the last 20 yr), the global temperature in the second part of the current century can increase by 1.6–2.0°C.

Journal

Physical OceanographySpringer Journals

Published: Feb 23, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off