Green water void fraction due to breaking wave impinging and overtopping

Green water void fraction due to breaking wave impinging and overtopping The present study uses laboratory measurements to investigate the void fraction of an overtopping flow on a structure. The overtopping flow, also called green water, was generated by the impingement of a plunging breaking wave on the structure following the Froude similarity of an extreme hurricane wave and a simplified offshore structure. The flow is multi-phased and turbulent with significant aeration. A fiber optic reflectometer (FOR) and bubble image velocimetry (BIV) were employed to measure the void fraction and velocity in the flow, respectively, and to determine the water level on the deck. Mean properties of void fraction and velocity were obtained by ensemble-averaging and time-averaging the repeated instantaneous measurements. The temporal and spatial distributions of void fraction reveal that the flow is very highly aerated near the front of green water and has relatively low aeration near the deck surface. The mean void fraction and velocity distributions were also depth-averaged for simplicity and potential use in engineering applications. Using the measured data, similarity profiles for depth-averaged void fraction, depth-averaged velocity, and water level were found. The study suggests that using only the velocity data is insufficient if the flow momentum or the flow rate is to be determined. The accuracy of the void fraction measurements was validated by comparing the directly measured water volume of the overtopping flow with the calculated water volume based on the measured velocity and void fraction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Green water void fraction due to breaking wave impinging and overtopping

Loading next page...
 
/lp/springer_journal/green-water-void-fraction-due-to-breaking-wave-impinging-and-BJGm5rgUs9
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-008-0507-3
Publisher site
See Article on Publisher Site

Abstract

The present study uses laboratory measurements to investigate the void fraction of an overtopping flow on a structure. The overtopping flow, also called green water, was generated by the impingement of a plunging breaking wave on the structure following the Froude similarity of an extreme hurricane wave and a simplified offshore structure. The flow is multi-phased and turbulent with significant aeration. A fiber optic reflectometer (FOR) and bubble image velocimetry (BIV) were employed to measure the void fraction and velocity in the flow, respectively, and to determine the water level on the deck. Mean properties of void fraction and velocity were obtained by ensemble-averaging and time-averaging the repeated instantaneous measurements. The temporal and spatial distributions of void fraction reveal that the flow is very highly aerated near the front of green water and has relatively low aeration near the deck surface. The mean void fraction and velocity distributions were also depth-averaged for simplicity and potential use in engineering applications. Using the measured data, similarity profiles for depth-averaged void fraction, depth-averaged velocity, and water level were found. The study suggests that using only the velocity data is insufficient if the flow momentum or the flow rate is to be determined. The accuracy of the void fraction measurements was validated by comparing the directly measured water volume of the overtopping flow with the calculated water volume based on the measured velocity and void fraction.

Journal

Experiments in FluidsSpringer Journals

Published: May 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off