Green synthesis of 4-methoxybenzophenone from anisole and benzoic acid catalyzed by tungstophosphoric acid supported on MCM-41

Green synthesis of 4-methoxybenzophenone from anisole and benzoic acid catalyzed by... An efficient method was established for the green synthesis of 4-methoxybenzophenone using benzoic acid as acylating agent catalyzed by tungstophosphoric acid (HPW) supported on MCM-41 (HPW/MCM-41). The conversion of benzoic acid reached 97.2 % and the selectivity for 4-methoxybenzophenone was 87.4 % under the optimum conditions over a 50 wt.% HPW/MCM-41 catalyst. HPW is proven to be well deposited on MCM-41, which leads to dealumination of MCM-41 and then offers more active centers, as demonstrated by inductively coupled plasma analysis and NH3 temperature-programmed desorption, accounting for the high catalytic activity of HPW/MCM-41. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Green synthesis of 4-methoxybenzophenone from anisole and benzoic acid catalyzed by tungstophosphoric acid supported on MCM-41

Loading next page...
 
/lp/springer_journal/green-synthesis-of-4-methoxybenzophenone-from-anisole-and-benzoic-acid-9Sjn01WQn9
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-014-1772-9
Publisher site
See Article on Publisher Site

Abstract

An efficient method was established for the green synthesis of 4-methoxybenzophenone using benzoic acid as acylating agent catalyzed by tungstophosphoric acid (HPW) supported on MCM-41 (HPW/MCM-41). The conversion of benzoic acid reached 97.2 % and the selectivity for 4-methoxybenzophenone was 87.4 % under the optimum conditions over a 50 wt.% HPW/MCM-41 catalyst. HPW is proven to be well deposited on MCM-41, which leads to dealumination of MCM-41 and then offers more active centers, as demonstrated by inductively coupled plasma analysis and NH3 temperature-programmed desorption, accounting for the high catalytic activity of HPW/MCM-41.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Aug 12, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off