Green synthesis and characterization of cobalt oxide nanoparticles and its electrocatalytic behavior

Green synthesis and characterization of cobalt oxide nanoparticles and its electrocatalytic behavior Green synthesis of pure cobalt oxide nanoparticles (CoO-NPs) in aqueous medium has been carried out using gelatin. The main advantage of using gelatin as a stabilizing agent is that it provides long-term stability for nanoparticles by preventing particles agglomeration. The particles have been characterized using X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EADX), and thermogravimetric analysis (TGA). TEM image shows the formation of CoO-NPs with average particle size of 28 nm which agrees well with the XRD data. Cobalt oxide nanoparticles modified carbon paste electrode (CoO-NPs/CPE) displayed excellent electrochemical catalytic activities towards the oxidation of glucose. The electrocatalytic response showed a wide linear range of 7–1000 µM, as well as its experimental limit of detection can be achieved 5.3 µM. The modified electrode for glucose determination is of the property of simple preparation, good stability and high sensitivity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Green synthesis and characterization of cobalt oxide nanoparticles and its electrocatalytic behavior

Loading next page...
 
/lp/springer_journal/green-synthesis-and-characterization-of-cobalt-oxide-nanoparticles-and-7OuuWFF5uF
Publisher
Springer Journals
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427216050219
Publisher site
See Article on Publisher Site

Abstract

Green synthesis of pure cobalt oxide nanoparticles (CoO-NPs) in aqueous medium has been carried out using gelatin. The main advantage of using gelatin as a stabilizing agent is that it provides long-term stability for nanoparticles by preventing particles agglomeration. The particles have been characterized using X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EADX), and thermogravimetric analysis (TGA). TEM image shows the formation of CoO-NPs with average particle size of 28 nm which agrees well with the XRD data. Cobalt oxide nanoparticles modified carbon paste electrode (CoO-NPs/CPE) displayed excellent electrochemical catalytic activities towards the oxidation of glucose. The electrocatalytic response showed a wide linear range of 7–1000 µM, as well as its experimental limit of detection can be achieved 5.3 µM. The modified electrode for glucose determination is of the property of simple preparation, good stability and high sensitivity.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Aug 12, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off