Green Engineered Biomolecule-Capped Silver Nanoparticles Fabricated from Cichorium intybus Extract: In Vitro Assessment on Apoptosis Properties Toward Human Breast Cancer (MCF-7) Cells

Green Engineered Biomolecule-Capped Silver Nanoparticles Fabricated from Cichorium intybus... The current experiment reveals the anticancer properties of silver nanoparticles (AgNPs) synthesized using aqueous leaf extract of Cichorium intybus, a significant medicinal plant. The characteristics of AgNPs were continuously studied by powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), zeta potential, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) analysis. Current microscopic results show that produced AgNPs were spherical in shape with an average size of 17.17 nm. A strong peak between 2 and 4 keV showed the greatest ratio of the elemental silver signals, due to surface plasmon resonance (SPR). The AgNPs, fabricated by green method, had a negative zeta potential of − 9.76 mV, which indicates that the synthesized AgNPs is dispersed in the medium with high stability. The in vitro cytotoxicity effect of AgNPs showed promising anticancer activity against human breast cancer MCF-7 cells. Annexin V-FITC/propidium iodide assay, Hoechst 33258 staining, and upregulation of caspase 3 activity revealed significant apoptosis activities of AgNPs against MCF-7 cells. Moreover, the flow cytometric analyses of cell cycle distribution of MCF7 cells showed that AgNPs treatment has enhanced the sub-G1 peaks, which is an indicator of apoptosis pathway. Overall results in our study suggested that AgNPs http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biological Trace Element Research Springer Journals

Green Engineered Biomolecule-Capped Silver Nanoparticles Fabricated from Cichorium intybus Extract: In Vitro Assessment on Apoptosis Properties Toward Human Breast Cancer (MCF-7) Cells

Loading next page...
 
/lp/springer_journal/green-engineered-biomolecule-capped-silver-nanoparticles-fabricated-J9ELz68yAr
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Life Sciences; Biochemistry, general; Biotechnology; Nutrition; Oncology
ISSN
0163-4984
eISSN
1559-0720
D.O.I.
10.1007/s12011-018-1392-0
Publisher site
See Article on Publisher Site

Abstract

The current experiment reveals the anticancer properties of silver nanoparticles (AgNPs) synthesized using aqueous leaf extract of Cichorium intybus, a significant medicinal plant. The characteristics of AgNPs were continuously studied by powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), zeta potential, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) analysis. Current microscopic results show that produced AgNPs were spherical in shape with an average size of 17.17 nm. A strong peak between 2 and 4 keV showed the greatest ratio of the elemental silver signals, due to surface plasmon resonance (SPR). The AgNPs, fabricated by green method, had a negative zeta potential of − 9.76 mV, which indicates that the synthesized AgNPs is dispersed in the medium with high stability. The in vitro cytotoxicity effect of AgNPs showed promising anticancer activity against human breast cancer MCF-7 cells. Annexin V-FITC/propidium iodide assay, Hoechst 33258 staining, and upregulation of caspase 3 activity revealed significant apoptosis activities of AgNPs against MCF-7 cells. Moreover, the flow cytometric analyses of cell cycle distribution of MCF7 cells showed that AgNPs treatment has enhanced the sub-G1 peaks, which is an indicator of apoptosis pathway. Overall results in our study suggested that AgNPs

Journal

Biological Trace Element ResearchSpringer Journals

Published: May 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off