Graphene oxide/poly(N-isopropyl acrylamide)/sodium alginate-based dual responsive composite beads for controlled release characteristics of chemotherapeutic agent

Graphene oxide/poly(N-isopropyl acrylamide)/sodium alginate-based dual responsive composite beads... In this work, graphene oxide (GO)-incorporated composite beads were developed from poly(N-isopropyl acrylamide)/sodium alginate (PNIPAM/NaAlg) using ionotropic gelation technique. The interaction between GO and PNIPAM/NaAlg with Ca2+ ions as a cross-linker was investigated by Fourier transform spectroscopy. X-Ray diffraction pattern showed that the GO was distributed uniformly in the PNIPAM/NaAlg with Ca2+ ions while scanning electron micrograph technique revealed that composite beads were formed in spherical shape. The controlled release characteristics of composite beads were studied using 5-fluorouracil (5-FU) as anti-cancer model drug. The encapsulation efficiencies were found to be between 90 and 92% in all formulations. Furthermore, the equilibrium swelling ratio (%) and in vitro release studies of the beads were carried out in two different pH values of 1.2 and 7.4 and at different temperature conditions of 25 and 37 °C. The obtained results showed that the swelling ratio decreased with an increase in GO concentration. In vitro release studies performed in response to both pH and temperature and they proved that the 5-FU drug was released from composite beads over 32 h without burst release. Cytotoxicity results showed pristine composite beads are good cytocompatible. In addition, the cytotoxicity of 5-FU was found to be improved when incorporated with composite beads than pure 5-FU. It is therefore concluded that the developed composite beads have dual response and can be used as controlling released carriers in cancer drug delivery applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Iranian Polymer Journal Springer Journals

Graphene oxide/poly(N-isopropyl acrylamide)/sodium alginate-based dual responsive composite beads for controlled release characteristics of chemotherapeutic agent

Loading next page...
 
/lp/springer_journal/graphene-oxide-poly-n-isopropyl-acrylamide-sodium-alginate-based-dual-YCNUrQGRcz
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Iran Polymer and Petrochemical Institute
Subject
Chemistry; Polymer Sciences; Ceramics, Glass, Composites, Natural Materials
ISSN
1026-1265
eISSN
1735-5265
D.O.I.
10.1007/s13726-017-0543-z
Publisher site
See Article on Publisher Site

Abstract

In this work, graphene oxide (GO)-incorporated composite beads were developed from poly(N-isopropyl acrylamide)/sodium alginate (PNIPAM/NaAlg) using ionotropic gelation technique. The interaction between GO and PNIPAM/NaAlg with Ca2+ ions as a cross-linker was investigated by Fourier transform spectroscopy. X-Ray diffraction pattern showed that the GO was distributed uniformly in the PNIPAM/NaAlg with Ca2+ ions while scanning electron micrograph technique revealed that composite beads were formed in spherical shape. The controlled release characteristics of composite beads were studied using 5-fluorouracil (5-FU) as anti-cancer model drug. The encapsulation efficiencies were found to be between 90 and 92% in all formulations. Furthermore, the equilibrium swelling ratio (%) and in vitro release studies of the beads were carried out in two different pH values of 1.2 and 7.4 and at different temperature conditions of 25 and 37 °C. The obtained results showed that the swelling ratio decreased with an increase in GO concentration. In vitro release studies performed in response to both pH and temperature and they proved that the 5-FU drug was released from composite beads over 32 h without burst release. Cytotoxicity results showed pristine composite beads are good cytocompatible. In addition, the cytotoxicity of 5-FU was found to be improved when incorporated with composite beads than pure 5-FU. It is therefore concluded that the developed composite beads have dual response and can be used as controlling released carriers in cancer drug delivery applications.

Journal

Iranian Polymer JournalSpringer Journals

Published: Jul 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off