Graphene–Au composite sensor for electrochemical detection of para-nitrophenol

Graphene–Au composite sensor for electrochemical detection of para-nitrophenol A novel electrochemical sensor for para-nitrophenol (p-NP) was constructed with graphene–Au composite containing 10 % Au (G–Au 10 %). In the composite, Au nanoparticles with the size of ca. 11 nm were regularly scattered on graphene sheet without aggregation, which offers dramatically higher electrocatalytic activity on the redox of K3[Fe(CN)6]/K4[Fe(CN)6] couple than sole Au nanoparticles. Compared to sole Au nanoparticles, the G–Au 10 % also exhibited dramatically improved electrocatalytic activity on the reduction of p-NP. Amperometric detection of p-NP at G–Au 10 % modified electrode displayed a wide linear range of 0.47–10.75 mM with detection limit of 0.47 μM and a high sensitivity of 52.85 μA/mM. Considering the thrifty in utilization of noble Au, the G–Au 10 % can be successfully applied as a low-cost and powerful sensing material for trace detection of p-NP. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Graphene–Au composite sensor for electrochemical detection of para-nitrophenol

Loading next page...
 
/lp/springer_journal/graphene-au-composite-sensor-for-electrochemical-detection-of-para-rEnKRbSB3I
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0560-7
Publisher site
See Article on Publisher Site

Abstract

A novel electrochemical sensor for para-nitrophenol (p-NP) was constructed with graphene–Au composite containing 10 % Au (G–Au 10 %). In the composite, Au nanoparticles with the size of ca. 11 nm were regularly scattered on graphene sheet without aggregation, which offers dramatically higher electrocatalytic activity on the redox of K3[Fe(CN)6]/K4[Fe(CN)6] couple than sole Au nanoparticles. Compared to sole Au nanoparticles, the G–Au 10 % also exhibited dramatically improved electrocatalytic activity on the reduction of p-NP. Amperometric detection of p-NP at G–Au 10 % modified electrode displayed a wide linear range of 0.47–10.75 mM with detection limit of 0.47 μM and a high sensitivity of 52.85 μA/mM. Considering the thrifty in utilization of noble Au, the G–Au 10 % can be successfully applied as a low-cost and powerful sensing material for trace detection of p-NP.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: May 4, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off