Granular computing: from granularity optimization to multi-granularity joint problem solving

Granular computing: from granularity optimization to multi-granularity joint problem solving Human beings solve problems in different granularity worlds and shift from one granularity world to another quickly. It reflects human beings’ intelligence in problem solving to some extent. In the era of big data, some new problems are emerging in real life. For example, traditional big data processing models always compute from raw data, failing to consider the granularity feature of human. Thus, they are hard to solve the 3 V characteristics of big data. Granular computing (GrC) combines the multi-granularity thinking pattern of human intelligence with problem solving mode to deal with big data. Based on the related notions and characteristics of GrC, this paper reviews the previous studies of GrC in three progressive levels: granularity optimization, granularity conversion and multi-granularity joint problem solving. Then we proposed the diagram for relationship among three basic modes of GrC. Furthermore, the feasibility of GrC for big data processing is analyzed. Some research prospects of granular computing are given. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Granular Computing Springer Journals

Granular computing: from granularity optimization to multi-granularity joint problem solving

Loading next page...
 
/lp/springer_journal/granular-computing-from-granularity-optimization-to-multi-granularity-iZw6cHGlnn
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer International Publishing Switzerland
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics)
ISSN
2364-4966
eISSN
2364-4974
D.O.I.
10.1007/s41066-016-0032-3
Publisher site
See Article on Publisher Site

Abstract

Human beings solve problems in different granularity worlds and shift from one granularity world to another quickly. It reflects human beings’ intelligence in problem solving to some extent. In the era of big data, some new problems are emerging in real life. For example, traditional big data processing models always compute from raw data, failing to consider the granularity feature of human. Thus, they are hard to solve the 3 V characteristics of big data. Granular computing (GrC) combines the multi-granularity thinking pattern of human intelligence with problem solving mode to deal with big data. Based on the related notions and characteristics of GrC, this paper reviews the previous studies of GrC in three progressive levels: granularity optimization, granularity conversion and multi-granularity joint problem solving. Then we proposed the diagram for relationship among three basic modes of GrC. Furthermore, the feasibility of GrC for big data processing is analyzed. Some research prospects of granular computing are given.

Journal

Granular ComputingSpringer Journals

Published: Oct 18, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off