Granular computing-based approach for classification towards reduction of bias in ensemble learning

Granular computing-based approach for classification towards reduction of bias in ensemble learning Machine learning has become a powerful approach in practical applications, such as decision making, sentiment analysis and ontology engineering. To improve the overall performance in machine learning tasks, ensemble learning has become increasingly popular by combining different learning algorithms or models. Popular approaches of ensemble learning include Bagging and Boosting, which involve voting towards the final classification. The voting in both Bagging and Boosting could result in incorrect classification due to the bias in the way voting takes place. To reduce the bias in voting, this paper proposes a probabilistic approach of voting in the context of granular computing towards improvement of overall accuracy of classification. An experimental study is reported to validate the proposed approach of voting using 15 data sets from the UCI repository. The results show that probabilistic voting is effective in increasing the accuracy through reduction of the bias in voting. This paper contributes to the theoretical and empirical analysis of causes of bias in voting, towards advancing ensemble learning approaches through the use of probabilistic voting. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Granular Computing Springer Journals

Granular computing-based approach for classification towards reduction of bias in ensemble learning

Loading next page...
 
/lp/springer_journal/granular-computing-based-approach-for-classification-towards-reduction-BsQm5GY0E6
Publisher
Springer International Publishing
Copyright
Copyright © 2016 by The Author(s)
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics)
ISSN
2364-4966
eISSN
2364-4974
D.O.I.
10.1007/s41066-016-0034-1
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial