Gracilaria tenuistipitata (Rhodophyta) tolerance to cadmium and copper exposure observed through gene expression and photosynthesis analyses

Gracilaria tenuistipitata (Rhodophyta) tolerance to cadmium and copper exposure observed through... Heavy metals are toxic to all organisms and their presence can have great impact on ecosystems. The study of strategies to remove contaminants is thus important, as is increased understanding of the resistance mechanisms of candidate organisms to be used as phytoremediators. The present study evaluate the genes involved in chronic stress using two different expression techniques to profile the transcriptome of the marine macroalga Gracilaria tenuistipitata after exposure to the EC50 of cadmium (Cd) and copper (Cu). Some known molecular markers for chronic pollution were observed, indicating that resistance mechanisms are induced within the first hour of treatment. Differences in gene expression response patterns between the two metals were found, where Cd up-regulated the expressions of superoxide dismutase and the nitrate transporter NRT even after 6 days of exposure. Expressions of both nuclear and chloroplast-encoded proteins were affected, and a stronger tolerance mechanism involving proteins of unknown function is certainly connected to the tolerance of the alga, warranting further studies. After 6 days of exposure to Cd or Cu, a slower acclimation was detected for the latter. Analysis of the photosynthetic rate revealed acclimation over time, corroborating a previous study where G. tenuistipitata was able to accumulate these metals and tolerate their negative effects, reinforcing the potential use of this macroalga in integrated bioremediation processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Phycology Springer Journals

Gracilaria tenuistipitata (Rhodophyta) tolerance to cadmium and copper exposure observed through gene expression and photosynthesis analyses

Loading next page...
 
/lp/springer_journal/gracilaria-tenuistipitata-rhodophyta-tolerance-to-cadmium-and-copper-EbdPLKpQKO
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Life Sciences; Plant Sciences; Freshwater & Marine Ecology; Plant Physiology; Ecology
ISSN
0921-8971
eISSN
1573-5176
D.O.I.
10.1007/s10811-017-1360-7
Publisher site
See Article on Publisher Site

Abstract

Heavy metals are toxic to all organisms and their presence can have great impact on ecosystems. The study of strategies to remove contaminants is thus important, as is increased understanding of the resistance mechanisms of candidate organisms to be used as phytoremediators. The present study evaluate the genes involved in chronic stress using two different expression techniques to profile the transcriptome of the marine macroalga Gracilaria tenuistipitata after exposure to the EC50 of cadmium (Cd) and copper (Cu). Some known molecular markers for chronic pollution were observed, indicating that resistance mechanisms are induced within the first hour of treatment. Differences in gene expression response patterns between the two metals were found, where Cd up-regulated the expressions of superoxide dismutase and the nitrate transporter NRT even after 6 days of exposure. Expressions of both nuclear and chloroplast-encoded proteins were affected, and a stronger tolerance mechanism involving proteins of unknown function is certainly connected to the tolerance of the alga, warranting further studies. After 6 days of exposure to Cd or Cu, a slower acclimation was detected for the latter. Analysis of the photosynthetic rate revealed acclimation over time, corroborating a previous study where G. tenuistipitata was able to accumulate these metals and tolerate their negative effects, reinforcing the potential use of this macroalga in integrated bioremediation processes.

Journal

Journal of Applied PhycologySpringer Journals

Published: Jan 26, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off