GPU-accelerated string matching for database applications

GPU-accelerated string matching for database applications Implementations of relational operators on GPU processors have resulted in order of magnitude speedups compared to their multicore CPU counterparts. Here we focus on the efficient implementation of string matching operators common in SQL queries. Due to different architectural features the optimal algorithm for CPUs might be suboptimal for GPUs. GPUs achieve high memory bandwidth by running thousands of threads, so it is not feasible to keep the working set of all threads in the cache in a naive implementation. In GPUs the unit of execution is a group of threads and in the presence of loops and branches, threads in a group have to follow the same execution path; if some threads diverge, then different paths are serialized. We study the cache memory efficiency of single- and multi-pattern string matching algorithms for conventional and pivoted string layouts in the GPU memory. We evaluate the memory efficiency in terms of memory access pattern and achieved memory bandwidth for different parallelization methods. To reduce thread divergence, we split string matching into multiple steps. We evaluate the different matching algorithms in terms of average- and worst-case performance and compare them against state-of-the-art CPU and GPU libraries. Our experimental evaluation shows that thread and memory efficiency affect performance significantly and that our proposed methods outperform previous CPU and GPU algorithms in terms of raw performance and power efficiency. The Knuth–Morris–Pratt algorithm is a good choice for GPUs because its regular memory access pattern makes it amenable to several GPU optimizations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

GPU-accelerated string matching for database applications

Loading next page...
 
/lp/springer_journal/gpu-accelerated-string-matching-for-database-applications-IQtR300fCg
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-015-0409-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial