GOSAC: global optimization with surrogate approximation of constraints

GOSAC: global optimization with surrogate approximation of constraints We introduce GOSAC, a global optimization algorithm for problems with computationally expensive black-box constraints and computationally cheap objective functions. The variables may be continuous, integer, or mixed-integer. GOSAC uses a two-phase optimization approach. The first phase aims at finding a feasible point by solving a multi-objective optimization problem in which the constraints are minimized simultaneously. The second phase aims at improving the feasible solution. In both phases, we use cubic radial basis function surrogate models to approximate the computationally expensive constraints. We iteratively select sample points by minimizing the computationally cheap objective function subject to the constraint function approximations. We assess GOSAC’s efficiency on computationally cheap test problems with integer, mixed-integer, and continuous variables and two environmental applications. We compare GOSAC to NOMAD and a genetic algorithm (GA). The results of the numerical experiments show that for a given budget of allowed expensive constraint evaluations, GOSAC finds better feasible solutions more efficiently than NOMAD and GA for most benchmark problems and both applications. GOSAC finds feasible solutions with a higher probability than NOMAD and GOSAC. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Global Optimization Springer Journals

GOSAC: global optimization with surrogate approximation of constraints

Loading next page...
 
/lp/springer_journal/gosac-global-optimization-with-surrogate-approximation-of-constraints-UsoNEK6C7i
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York (outside the USA)
Subject
Mathematics; Optimization; Operations Research/Decision Theory; Real Functions; Computer Science, general
ISSN
0925-5001
eISSN
1573-2916
D.O.I.
10.1007/s10898-017-0496-y
Publisher site
See Article on Publisher Site

Abstract

We introduce GOSAC, a global optimization algorithm for problems with computationally expensive black-box constraints and computationally cheap objective functions. The variables may be continuous, integer, or mixed-integer. GOSAC uses a two-phase optimization approach. The first phase aims at finding a feasible point by solving a multi-objective optimization problem in which the constraints are minimized simultaneously. The second phase aims at improving the feasible solution. In both phases, we use cubic radial basis function surrogate models to approximate the computationally expensive constraints. We iteratively select sample points by minimizing the computationally cheap objective function subject to the constraint function approximations. We assess GOSAC’s efficiency on computationally cheap test problems with integer, mixed-integer, and continuous variables and two environmental applications. We compare GOSAC to NOMAD and a genetic algorithm (GA). The results of the numerical experiments show that for a given budget of allowed expensive constraint evaluations, GOSAC finds better feasible solutions more efficiently than NOMAD and GA for most benchmark problems and both applications. GOSAC finds feasible solutions with a higher probability than NOMAD and GOSAC.

Journal

Journal of Global OptimizationSpringer Journals

Published: Jan 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off