Gold nanorod-based electrochemical sensing of small biomolecules: A review

Gold nanorod-based electrochemical sensing of small biomolecules: A review Gold nanorods (AuNRs) show high potential in electrochemical sensing owing to their excellent conductivity, electrocatalytic activity, selectivity and sensitivity. This review (with 99 refs.) summarizes the performance of AuNR-based electrochemical sensors based on the use of advanced nanocomposites. Following an introduction into the fields of biosensors and nanomaterials, the article summarizes the advantages and limitations of conventional analytical methods. A third section overviews the methods for preparation and characterization of AuNRs and nanocomposites including bimetallic nanorods, gold-metal oxide, gold-carbon nanotubes, gold-polymer, gold-graphene, gold-CNT and gold-enzymes conjugates. Their electrochemistry is treated next, with aspects related to the effects of rod size and shape, of thiol coatings on voltammetric signals, and on the behavior of 1-D AuNRs and respective arrays. Section 5 gives examples for non-enzymatic sensors for simple biomolecules, with subsections on sensors for hydrogen peroxide, nitric oxide, glucose, dopamine, NAD/NADH, cysteine, and some drugs. Section 6 covers enzyme-based sensors, with examples on sensors using peroxidases, oxidases and the like. The next sections cover DNA biosensors (such as for DNA biomarkers) and immunosensors, mainly for tumor markers. Possibilities for improving sensor performance are presented at the end of the review. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microchimica Acta Springer Journals

Gold nanorod-based electrochemical sensing of small biomolecules: A review

Loading next page...
 
/lp/springer_journal/gold-nanorod-based-electrochemical-sensing-of-small-biomolecules-a-atbrEZnjSL
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag GmbH Austria
Subject
Chemistry; Nanochemistry; Nanotechnology; Characterization and Evaluation of Materials; Analytical Chemistry; Microengineering
ISSN
0026-3672
eISSN
1436-5073
D.O.I.
10.1007/s00604-017-2418-6
Publisher site
See Article on Publisher Site

Abstract

Gold nanorods (AuNRs) show high potential in electrochemical sensing owing to their excellent conductivity, electrocatalytic activity, selectivity and sensitivity. This review (with 99 refs.) summarizes the performance of AuNR-based electrochemical sensors based on the use of advanced nanocomposites. Following an introduction into the fields of biosensors and nanomaterials, the article summarizes the advantages and limitations of conventional analytical methods. A third section overviews the methods for preparation and characterization of AuNRs and nanocomposites including bimetallic nanorods, gold-metal oxide, gold-carbon nanotubes, gold-polymer, gold-graphene, gold-CNT and gold-enzymes conjugates. Their electrochemistry is treated next, with aspects related to the effects of rod size and shape, of thiol coatings on voltammetric signals, and on the behavior of 1-D AuNRs and respective arrays. Section 5 gives examples for non-enzymatic sensors for simple biomolecules, with subsections on sensors for hydrogen peroxide, nitric oxide, glucose, dopamine, NAD/NADH, cysteine, and some drugs. Section 6 covers enzyme-based sensors, with examples on sensors using peroxidases, oxidases and the like. The next sections cover DNA biosensors (such as for DNA biomarkers) and immunosensors, mainly for tumor markers. Possibilities for improving sensor performance are presented at the end of the review.

Journal

Microchimica ActaSpringer Journals

Published: Jul 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off