Gold nanoparticle based photometric determination of tobramycin by using new specific DNA aptamers

Gold nanoparticle based photometric determination of tobramycin by using new specific DNA aptamers A magnetic bead-based SELEX was applied to identify 37 single-stranded DNA aptamers specific for tobramycin after ten rounds of selection. The aptamers were classified into nine families according to sequence analysis. Among them, several aptamers with typical sequences were selected and their dissociation constants (Kds) were determined by a fluorescent method. An aptamer termed “Ap 32”, with a Kd value of 56.8 ± 4.6 nM, possesses the highest affinity and satisfactory specificity. Theoretical modeling showed that nucleotides 14–18 and 26–29 play a most significant role in the interaction between aptamer and tobramycin. Subsequently, the sequence of Ap 32 was optimized through rationally designed truncation. The truncated aptamer Ap 32–2 consists of 34 nucleotides and has a Kd that is similar to the original one. It was chosen as the optimal aptamer for use in the assay and was immobilized on gold nanoparticles. On addition of tobramycin, the color turns from red to purple. The findings were used to design a photometric assay (best performed at 520 nm) that has a linear response in the 100 nM to 1.4 μM concentration range, with a 37.9 nM detection limit. The method was successfully applied to the determination of tobramycin in (spiked) honey samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microchimica Acta Springer Journals

Gold nanoparticle based photometric determination of tobramycin by using new specific DNA aptamers

Loading next page...
 
/lp/springer_journal/gold-nanoparticle-based-photometric-determination-of-tobramycin-by-Ovp40TTDIk
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag GmbH Austria, part of Springer Nature
Subject
Chemistry; Nanochemistry; Nanotechnology; Characterization and Evaluation of Materials; Analytical Chemistry; Microengineering
ISSN
0026-3672
eISSN
1436-5073
D.O.I.
10.1007/s00604-017-2568-6
Publisher site
See Article on Publisher Site

Abstract

A magnetic bead-based SELEX was applied to identify 37 single-stranded DNA aptamers specific for tobramycin after ten rounds of selection. The aptamers were classified into nine families according to sequence analysis. Among them, several aptamers with typical sequences were selected and their dissociation constants (Kds) were determined by a fluorescent method. An aptamer termed “Ap 32”, with a Kd value of 56.8 ± 4.6 nM, possesses the highest affinity and satisfactory specificity. Theoretical modeling showed that nucleotides 14–18 and 26–29 play a most significant role in the interaction between aptamer and tobramycin. Subsequently, the sequence of Ap 32 was optimized through rationally designed truncation. The truncated aptamer Ap 32–2 consists of 34 nucleotides and has a Kd that is similar to the original one. It was chosen as the optimal aptamer for use in the assay and was immobilized on gold nanoparticles. On addition of tobramycin, the color turns from red to purple. The findings were used to design a photometric assay (best performed at 520 nm) that has a linear response in the 100 nM to 1.4 μM concentration range, with a 37.9 nM detection limit. The method was successfully applied to the determination of tobramycin in (spiked) honey samples.

Journal

Microchimica ActaSpringer Journals

Published: Dec 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off