GMADM-based attributes selection method in developing prediction model

GMADM-based attributes selection method in developing prediction model Attribute Selection is an important issue for developing a prediction model, however, how to determine an effective attribute selection algorithm is an important but difficult issue. Attribute selection can effectively delete the irrelevant and redundant attributes to increase the prediction accuracy, and evaluating attribute selection methods usually need to consider several criteria such as accuracy, type I error, and type II error. In this paper, the selected attribute process is modeled as a group multiple attributes decision making (GMADM) problem. In evaluating different GMACD methods, the most results usually are consistently, But there are some situations where the evaluated outcomes have different results. The GMADM method is useful tool for evaluating attribute selection algorithms, and the TOPSIS is capable of identifying a compromised solution when different GMADM method result in conflicting rankings. Therefore, this paper proposes an objective (persuasive) GMADM-based attributes selection method to solve this disagreement and help decision makers pick the most suitable method. After verification, the proposed model is more persuasive to evaluate the attributes selection methods for developing prediction model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

GMADM-based attributes selection method in developing prediction model

Loading next page...
 
/lp/springer_journal/gmadm-based-attributes-selection-method-in-developing-prediction-model-TrfG02FfOo
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Social Sciences, general; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-012-9722-3
Publisher site
See Article on Publisher Site

Abstract

Attribute Selection is an important issue for developing a prediction model, however, how to determine an effective attribute selection algorithm is an important but difficult issue. Attribute selection can effectively delete the irrelevant and redundant attributes to increase the prediction accuracy, and evaluating attribute selection methods usually need to consider several criteria such as accuracy, type I error, and type II error. In this paper, the selected attribute process is modeled as a group multiple attributes decision making (GMADM) problem. In evaluating different GMACD methods, the most results usually are consistently, But there are some situations where the evaluated outcomes have different results. The GMADM method is useful tool for evaluating attribute selection algorithms, and the TOPSIS is capable of identifying a compromised solution when different GMADM method result in conflicting rankings. Therefore, this paper proposes an objective (persuasive) GMADM-based attributes selection method to solve this disagreement and help decision makers pick the most suitable method. After verification, the proposed model is more persuasive to evaluate the attributes selection methods for developing prediction model.

Journal

Quality & QuantitySpringer Journals

Published: May 17, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off