Glycosylation Influences Gating and pH Sensitivity of I sK

Glycosylation Influences Gating and pH Sensitivity of I sK The KvLQT1 and minK subunits that coassemble to form I sK channels, contain potential N-glycosylation sites. To examine the role of glycosylation in channel function, a Chinese hamster ovary cell line deficient in glycosylation (Lec-1) and its parental cell line (Pro-5) were transiently transfected with human KvLQT1 (hKvLQT1) cDNA, alone and in combination with the rat (rminK) or human minK (hminK) cDNA. Functional KvLQT1 and I sK currents were expressed in both cell lines, although amplitudes were larger in Pro-5 than Lec-1 cells transfected with hKvLQT1 and hKvLQT1/hminK. For I sK , but not KvLQT1, the voltage-dependence of activation was shifted to more positive voltages and the activation kinetics were slower in the Lec-1 compared to the Pro-5 cells. The effect of extracellular acidification on recombinant KvLQT1 and I sK currents was investigated in Pro-5 and Lec-1 cells. Changing external pH (pH o ) from 7.4 to 6.0 significantly decreased the amplitude and increased the half-activation voltage (V 1/2) of KvLQT1 currents in Pro-5 and Lec-1 cells. In Pro-5 cells, decreasing pH o reduced I sK amplitude without increasing V 1/2, whether rminK or hminK was coexpressed with hKvLQT. In contrast, changing pH o from 7.4 to 6.0 did not significantly change I sK amplitude in Lec-1 cells. Thus, oligosaccharides attached to the minK subunit affect not only the gating properties, but also the pH sensitivity of I sK . http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Glycosylation Influences Gating and pH Sensitivity of I sK

Loading next page...
 
/lp/springer_journal/glycosylation-influences-gating-and-ph-sensitivity-of-i-sk-c4wGY3Jc5p
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002320001100
Publisher site
See Article on Publisher Site

Abstract

The KvLQT1 and minK subunits that coassemble to form I sK channels, contain potential N-glycosylation sites. To examine the role of glycosylation in channel function, a Chinese hamster ovary cell line deficient in glycosylation (Lec-1) and its parental cell line (Pro-5) were transiently transfected with human KvLQT1 (hKvLQT1) cDNA, alone and in combination with the rat (rminK) or human minK (hminK) cDNA. Functional KvLQT1 and I sK currents were expressed in both cell lines, although amplitudes were larger in Pro-5 than Lec-1 cells transfected with hKvLQT1 and hKvLQT1/hminK. For I sK , but not KvLQT1, the voltage-dependence of activation was shifted to more positive voltages and the activation kinetics were slower in the Lec-1 compared to the Pro-5 cells. The effect of extracellular acidification on recombinant KvLQT1 and I sK currents was investigated in Pro-5 and Lec-1 cells. Changing external pH (pH o ) from 7.4 to 6.0 significantly decreased the amplitude and increased the half-activation voltage (V 1/2) of KvLQT1 currents in Pro-5 and Lec-1 cells. In Pro-5 cells, decreasing pH o reduced I sK amplitude without increasing V 1/2, whether rminK or hminK was coexpressed with hKvLQT. In contrast, changing pH o from 7.4 to 6.0 did not significantly change I sK amplitude in Lec-1 cells. Thus, oligosaccharides attached to the minK subunit affect not only the gating properties, but also the pH sensitivity of I sK .

Journal

The Journal of Membrane BiologySpringer Journals

Published: Sep 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off