Glycophyte salt resistance

Glycophyte salt resistance By perfusion of entire sunflower stems with NaCl solutions of various concentrations, we studied the phenomenon of sodium decrement, i.e., sodium retaining in the stem and leaf petioles. Such retaining could comprise up to 50–80% of initial sodium concentration. It depended on the rate of perfusion, the length of xylem vessels, and NaCl concentration. When perfusion with 100–500 mM NaCl concentrations (high for glycophytes) lasted for 10–12 days, we did not observe any decrease in the degree of sodium decrement. Simultaneously with sodium decrement, other ions (K+ and Ca2+) were secreted into the perfusate, thus providing for physiological equilibrating the monosalt solution supplied to the stem base. The high salt concentration in the perfusate induced a decrease in the hydraulic conductance of the vessels. The conclusion is that stressful NaCl solutions attain the shoot meristem and reproductive organs as an “equilibrated” salt solution and at a declined rate of xylem flow. The mechanisms of observed phenomenon of glycophyte salt resistance are discussed, the main of them being related to osmosis-dependent responses of stem living cells and the processes of ion exchange between the cells and xylem vessel content. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Glycophyte salt resistance

Loading next page...
 
/lp/springer_journal/glycophyte-salt-resistance-r719uZndOn
Publisher
Springer Journals
Copyright
Copyright © 2008 by MAIK Nauka
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443709010142
Publisher site
See Article on Publisher Site

Abstract

By perfusion of entire sunflower stems with NaCl solutions of various concentrations, we studied the phenomenon of sodium decrement, i.e., sodium retaining in the stem and leaf petioles. Such retaining could comprise up to 50–80% of initial sodium concentration. It depended on the rate of perfusion, the length of xylem vessels, and NaCl concentration. When perfusion with 100–500 mM NaCl concentrations (high for glycophytes) lasted for 10–12 days, we did not observe any decrease in the degree of sodium decrement. Simultaneously with sodium decrement, other ions (K+ and Ca2+) were secreted into the perfusate, thus providing for physiological equilibrating the monosalt solution supplied to the stem base. The high salt concentration in the perfusate induced a decrease in the hydraulic conductance of the vessels. The conclusion is that stressful NaCl solutions attain the shoot meristem and reproductive organs as an “equilibrated” salt solution and at a declined rate of xylem flow. The mechanisms of observed phenomenon of glycophyte salt resistance are discussed, the main of them being related to osmosis-dependent responses of stem living cells and the processes of ion exchange between the cells and xylem vessel content.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jan 8, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off