Glutathione Modulates Ca2+ Influx and Oxidative Toxicity Through TRPM2 Channel in Rat Dorsal Root Ganglion Neurons

Glutathione Modulates Ca2+ Influx and Oxidative Toxicity Through TRPM2 Channel in Rat Dorsal Root... Glutathione (GSH) is the most abundant thiol antioxidant in mammalian cells and maintains thiol redox in the cells. GSH depletion has been implicated in the neurobiology of sensory neurons. Because the mechanisms that lead to melastatin-like transient receptor potential 2 (TRPM2) channel activation/inhibition in response to glutathione depletion and 2-aminoethyldiphenyl borinate (2-APB) administration are not understood, we tested the effects of 2-APB and GSH on oxidative stress and buthionine sulfoximine (BSO)-induced TRPM2 cation channel currents in dorsal root ganglion (DRG) neurons of rats. DRG neurons were freshly isolated from rats and the neurons were incubated for 24 h with BSO. In whole-cell patch clamp experiments, TRPM2 currents in the rat were consistently induced by H2O2 or BSO. TRPM2 channels current densities and cytosolic free Ca2+ content of the neurons were higher in BSO and H2O2 groups than in control. However, the current densities and cytosolic Ca2+ release were also higher in the BSO + H2O2 group than in the H2O2 alone. When intracellular GSH is introduced by pipette TRPM2 channel currents were not activated by BSO, H2O2 or rotenone. BSO and H2O2-induced Ca2+ gates were blocked by the 2-APB. Glutathione peroxidase activity, lipid peroxidation and GSH levels in the DRG neurons were also modulated by GSH and 2-APB inhibition. In conclusion, we observed the protective role of 2-APB and GSH on Ca2+ influx through a TRPM2 channel in intracellular GSH depleted DRG neurons. Since cytosolic glutathione depletion is a common feature of neuropathic pain and diseases of sensory neuron, our findings are relevant to the etiology of neuropathology in DRG neurons. The Journal of Membrane Biology Springer Journals

Glutathione Modulates Ca2+ Influx and Oxidative Toxicity Through TRPM2 Channel in Rat Dorsal Root Ganglion Neurons

Loading next page...
Copyright © 2011 by Springer Science+Business Media, LLC
Life Sciences; Human Physiology; Biochemistry, general
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial