Glomerulopathy and mutations in NPHS1 and KIRREL2 in soft-coated Wheaten Terrier dogs

Glomerulopathy and mutations in NPHS1 and KIRREL2 in soft-coated Wheaten Terrier dogs Dogs of the soft-coated wheaten terrier breed (SCWT) are predisposed to adult-onset, genetically complex, protein-losing nephropathy (average onset age = 6.3 ± 2.0 years). A genome-wide association study using 62 dogs revealed a chromosomal region containing three statistically significant SNPs (p raw ≤ 4.13 × 10−8; p genome ≤ 0.005) when comparing DNA samples from affected and geriatric (≥14 years) unaffected SCWTs. Sequencing of candidate genes in the region revealed single nucleotide changes in each of two closely linked genes, NPHS1 and KIRREL2, which encode the slit diaphragm proteins nephrin and Neph3/filtrin, respectively. In humans, mutations in nephrin and decreased expression of Neph3 are associated with podocytopathy and protein-losing nephropathy. The base substitutions change a glycine to arginine in the fibronectin type 3 domain of nephrin and a proline to arginine in a conserved proline-rich region in Neph3. These novel mutations are not described in other species, nor were they found in 550 dogs of 105 other breeds, except in 3 dogs, including an affected Airedale terrier, homozygous for both substitutions. Risk for nephropathy is highest in dogs homozygous for the mutations (OR = 9.06; 95 % CI = 4.24–19.35). This is the first molecular characterization of an inherited podocytopathy in dogs and may serve as a model for continued studies of complex genetic and environmental interactions in glomerular disease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Glomerulopathy and mutations in NPHS1 and KIRREL2 in soft-coated Wheaten Terrier dogs

Loading next page...
 
/lp/springer_journal/glomerulopathy-and-mutations-in-nphs1-and-kirrel2-in-soft-coated-izKwBXlLAx
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-012-9445-8
Publisher site
See Article on Publisher Site

Abstract

Dogs of the soft-coated wheaten terrier breed (SCWT) are predisposed to adult-onset, genetically complex, protein-losing nephropathy (average onset age = 6.3 ± 2.0 years). A genome-wide association study using 62 dogs revealed a chromosomal region containing three statistically significant SNPs (p raw ≤ 4.13 × 10−8; p genome ≤ 0.005) when comparing DNA samples from affected and geriatric (≥14 years) unaffected SCWTs. Sequencing of candidate genes in the region revealed single nucleotide changes in each of two closely linked genes, NPHS1 and KIRREL2, which encode the slit diaphragm proteins nephrin and Neph3/filtrin, respectively. In humans, mutations in nephrin and decreased expression of Neph3 are associated with podocytopathy and protein-losing nephropathy. The base substitutions change a glycine to arginine in the fibronectin type 3 domain of nephrin and a proline to arginine in a conserved proline-rich region in Neph3. These novel mutations are not described in other species, nor were they found in 550 dogs of 105 other breeds, except in 3 dogs, including an affected Airedale terrier, homozygous for both substitutions. Risk for nephropathy is highest in dogs homozygous for the mutations (OR = 9.06; 95 % CI = 4.24–19.35). This is the first molecular characterization of an inherited podocytopathy in dogs and may serve as a model for continued studies of complex genetic and environmental interactions in glomerular disease.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 17, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off