Global analysis of gene expression in flower buds of Ms-cd1 Brassica oleracea conferring male sterility by using an Arabidopsis microarray

Global analysis of gene expression in flower buds of Ms-cd1 Brassica oleracea conferring male... The dominant male sterility gene Ms-cd1 is identified in Brassica oleracea. Electron microscopical observations revealed that abortion of pollen development starts after tetrad formation. This important male sterility phenotype is characterized by lack of degradation of the primary pollen mother cell (PMC) wall and delayed degradation of callose surrounding the tetrads and thus arrest of microspore release. Gene expression of the male sterile and fertile buds was analyzed by heterologous hybridization of Brassica oleracea cRNA onto an Arabidopsis whole genome oligonucleotide microarray. A total of 277 suppressed genes including 40 kinase-, 32 cell wall modification and 29 transport related genes were found to be significantly down regulated >3-fold in the male sterile mutant. The vast majority of the differentially expressed transcripts are found to present late pollen stage specific genes. Kinase genes, cell wall modification genes and ion transport genes were greatly over-represented when compared to their percentage of all flower bud expressed genes and represent 36.5% of the genes suppressed by Ms-cd1. Our results also suggest that Ms-cd1 may blocks an anther developmental pathway with a small number of genes suppressed in tapetum cells which prevent the degradation of callose and PMC wall, which further leads to the suppression of a large number of genes involved in signaling pathways, cell wall modification and ion transport in pollen grains. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Global analysis of gene expression in flower buds of Ms-cd1 Brassica oleracea conferring male sterility by using an Arabidopsis microarray

Loading next page...
 
/lp/springer_journal/global-analysis-of-gene-expression-in-flower-buds-of-ms-cd1-brassica-bcNjNeTdBj
Publisher
Springer Netherlands
Copyright
Copyright © 2007 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-007-9261-9
Publisher site
See Article on Publisher Site

Abstract

The dominant male sterility gene Ms-cd1 is identified in Brassica oleracea. Electron microscopical observations revealed that abortion of pollen development starts after tetrad formation. This important male sterility phenotype is characterized by lack of degradation of the primary pollen mother cell (PMC) wall and delayed degradation of callose surrounding the tetrads and thus arrest of microspore release. Gene expression of the male sterile and fertile buds was analyzed by heterologous hybridization of Brassica oleracea cRNA onto an Arabidopsis whole genome oligonucleotide microarray. A total of 277 suppressed genes including 40 kinase-, 32 cell wall modification and 29 transport related genes were found to be significantly down regulated >3-fold in the male sterile mutant. The vast majority of the differentially expressed transcripts are found to present late pollen stage specific genes. Kinase genes, cell wall modification genes and ion transport genes were greatly over-represented when compared to their percentage of all flower bud expressed genes and represent 36.5% of the genes suppressed by Ms-cd1. Our results also suggest that Ms-cd1 may blocks an anther developmental pathway with a small number of genes suppressed in tapetum cells which prevent the degradation of callose and PMC wall, which further leads to the suppression of a large number of genes involved in signaling pathways, cell wall modification and ion transport in pollen grains.

Journal

Plant Molecular BiologySpringer Journals

Published: Nov 28, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off