GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping

GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility... Rampant pasture burning has lead to various forest fires taking their toll over the health of many forests. Nanda Devi Biosphere Reserve, located in the northern part of India, witnessed a majority of these incidents in the recent past, though, it remains comprehensively untouched from research studies. The scale of these wildfires has led to an immense requirement of preventive measures to be taken for recuperating from such events. This requires for an in-depth analysis of the study area, its history of wildfires and their causes. These efforts would assist in laying a blueprint for a contingency plan in the event of a wildfire. This work proposes an evolutionary optimized gradient boosted decision trees for preparing wildfire susceptibility maps for the study area that would aid in the government’s forest preservation and disaster management activities. The study took 18 ignition factors of elevation, slope, aspect, plan curvature, topographic position index, topographic water index, normalized difference vegetation index, soil texture, temperature, rainfall, aridity index, potential evapotranspiration, relative humidity, wind speed, land cover and distance from roads, rivers and habitations into consideration. The study revealed that approximately 1432.025 km2 of area was very highly susceptible to forest fires while 1202.356 km2 was highly susceptible to forest fires. The proposed model was compared against various machine learning models such as random forest, neural networks and support vector machines, and it outperformed them by achieving an overall accuracy of 95.5%. The proposed model demonstrated good prospects for application in the field of hazard susceptibility mappings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Natural Hazards Springer Journals

GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping

Loading next page...
 
/lp/springer_journal/gis-based-evolutionary-optimized-gradient-boosted-decision-trees-for-90utGc9MyI
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Earth Sciences; Natural Hazards; Hydrogeology; Geophysics/Geodesy; Geotechnical Engineering & Applied Earth Sciences; Civil Engineering; Environmental Management
ISSN
0921-030X
eISSN
1573-0840
D.O.I.
10.1007/s11069-018-3256-5
Publisher site
See Article on Publisher Site

Abstract

Rampant pasture burning has lead to various forest fires taking their toll over the health of many forests. Nanda Devi Biosphere Reserve, located in the northern part of India, witnessed a majority of these incidents in the recent past, though, it remains comprehensively untouched from research studies. The scale of these wildfires has led to an immense requirement of preventive measures to be taken for recuperating from such events. This requires for an in-depth analysis of the study area, its history of wildfires and their causes. These efforts would assist in laying a blueprint for a contingency plan in the event of a wildfire. This work proposes an evolutionary optimized gradient boosted decision trees for preparing wildfire susceptibility maps for the study area that would aid in the government’s forest preservation and disaster management activities. The study took 18 ignition factors of elevation, slope, aspect, plan curvature, topographic position index, topographic water index, normalized difference vegetation index, soil texture, temperature, rainfall, aridity index, potential evapotranspiration, relative humidity, wind speed, land cover and distance from roads, rivers and habitations into consideration. The study revealed that approximately 1432.025 km2 of area was very highly susceptible to forest fires while 1202.356 km2 was highly susceptible to forest fires. The proposed model was compared against various machine learning models such as random forest, neural networks and support vector machines, and it outperformed them by achieving an overall accuracy of 95.5%. The proposed model demonstrated good prospects for application in the field of hazard susceptibility mappings.

Journal

Natural HazardsSpringer Journals

Published: Mar 12, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off