Gibbs Field Approaches in Image Processing Problems

Gibbs Field Approaches in Image Processing Problems In this paper, we address the problem of image denoising using a stochastic differential equation approach. Proposed stochastic dynamics schemes are based on the property of diffusion dynamics to converge to a distribution on global minima of the energy function of the model, under a special cooling schedule (the annealing procedure). To derive algorithms for computer simulations, we consider discrete-time approximations of the stochastic differential equation. We study convergence of the corresponding Markov chains to the diffusion process. We give conditions for the ergodicity of the Euler approximation scheme. In the conclusion, we compare results of computer simulations using the diffusion dynamics algorithms and the standard Metropolis–Hasting algorithm. Results are shown on synthetic and real data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Problems of Information Transmission Springer Journals

Gibbs Field Approaches in Image Processing Problems

Loading next page...
 
/lp/springer_journal/gibbs-field-approaches-in-image-processing-problems-0I9ldLN2qo
Publisher
Springer Journals
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Engineering; Communications Engineering, Networks; Electrical Engineering; Information Storage and Retrieval; Systems Theory, Control
ISSN
0032-9460
eISSN
1608-3253
D.O.I.
10.1023/B:PRIT.0000044262.70555.5c
Publisher site
See Article on Publisher Site

Abstract

In this paper, we address the problem of image denoising using a stochastic differential equation approach. Proposed stochastic dynamics schemes are based on the property of diffusion dynamics to converge to a distribution on global minima of the energy function of the model, under a special cooling schedule (the annealing procedure). To derive algorithms for computer simulations, we consider discrete-time approximations of the stochastic differential equation. We study convergence of the corresponding Markov chains to the diffusion process. We give conditions for the ergodicity of the Euler approximation scheme. In the conclusion, we compare results of computer simulations using the diffusion dynamics algorithms and the standard Metropolis–Hasting algorithm. Results are shown on synthetic and real data.

Journal

Problems of Information TransmissionSpringer Journals

Published: Oct 27, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off