Gibberellin and abscisic acid regulate GAST1 expression at the level of transcription

Gibberellin and abscisic acid regulate GAST1 expression at the level of transcription Both gibberellic acid (GA3) and abscisic acid (ABA) regulate the expression of the GAST1 gene of tomato. Treatment with GA3 increases the abundance of GAST1 RNA while treatment with ABA blocks this effect. In this study, the effects of GA3 and ABA on the rate of transcription of the GAST1 gene and the stability of GAST1 RNA were examined. Nuclear run-on analyses detected an increase in transcription of the GAST1 gene 1 h after GA3 treatment with transcription increasing to a maximum at 9 h after treatment. The half-life of GAST1 RNA in GA3-treated leaves was similar to that in control leaves. In addition, the extent of overexpression of GAST1 RNA in transgenic tomato plants containing the CaMV 35S promoter driving the expression of the GAST1 transcribed region was largely unaffected by GA3. These results suggest that GA3 stimulates the expression of the GAST1 gene by acting only at the level of transcription. ABA treatment dramatically reduced the abundance of GAST1 RNA in gib1 shoots through an effect at the level of transcription and did not appear to affect the stability of this RNA. Midcourse ABA addition to the GA3-incubated shoots reversed the GA3-mediated increase in the transcription of GAST1 gene within 15 min. Transgenic plants that either overexpressed or underexpressed GAST1 RNA exhibited no phenotypic differences from wild type. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Gibberellin and abscisic acid regulate GAST1 expression at the level of transcription

Loading next page...
 
/lp/springer_journal/gibberellin-and-abscisic-acid-regulate-gast1-expression-at-the-level-ghv0DbcNML
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006007315718
Publisher site
See Article on Publisher Site

Abstract

Both gibberellic acid (GA3) and abscisic acid (ABA) regulate the expression of the GAST1 gene of tomato. Treatment with GA3 increases the abundance of GAST1 RNA while treatment with ABA blocks this effect. In this study, the effects of GA3 and ABA on the rate of transcription of the GAST1 gene and the stability of GAST1 RNA were examined. Nuclear run-on analyses detected an increase in transcription of the GAST1 gene 1 h after GA3 treatment with transcription increasing to a maximum at 9 h after treatment. The half-life of GAST1 RNA in GA3-treated leaves was similar to that in control leaves. In addition, the extent of overexpression of GAST1 RNA in transgenic tomato plants containing the CaMV 35S promoter driving the expression of the GAST1 transcribed region was largely unaffected by GA3. These results suggest that GA3 stimulates the expression of the GAST1 gene by acting only at the level of transcription. ABA treatment dramatically reduced the abundance of GAST1 RNA in gib1 shoots through an effect at the level of transcription and did not appear to affect the stability of this RNA. Midcourse ABA addition to the GA3-incubated shoots reversed the GA3-mediated increase in the transcription of GAST1 gene within 15 min. Transgenic plants that either overexpressed or underexpressed GAST1 RNA exhibited no phenotypic differences from wild type.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off