GhTZF1 regulates drought stress responses and delays leaf senescence by inhibiting reactive oxygen species accumulation in transgenic Arabidopsis

GhTZF1 regulates drought stress responses and delays leaf senescence by inhibiting reactive... Redox homeostasis is important for plants to be able to maintain cellular metabolism, and disrupting cellular redox homeostasis will cause oxidative damage to cells and adversely affect plant growth. In this study, a cotton CCCH-type tandem zinc finger gene defined as GhTZF1, which was isolated from a cotton cell wall regeneration SSH library in our previous research, was characterized. GhTZF1 was predominantly expressed during early cell wall regeneration, and it was expressed in various vegetative and reproductive tissues. The expression of GhTZF1 was substantially up-regulated by a variety of abiotic stresses, such as PEG and salt. GhTZF1 also responds to methyl jasmonate (MeJA) and H2O2 treatment. Overexpression of GhTZF1 enhanced drought tolerance and delayed drought-induced leaf senescence in transgenic Arabidopsis. Subsequent experiments indicated that dark- and MeJA-induced leaf senescence was also attenuated in transgenic plants. The amount of H2O2 in transgenic plants was attenuated under both drought conditions and with MeJA-treatment. The activity of superoxide dismutase and peroxidase was higher in transgenic plants than in wild type plants under drought conditions. Quantitative real-time PCR analysis revealed that overexpression of GhTZF1 reduced the expression of oxidative-related senescence-associated genes (SAGs) under drought conditions. Overexpression of GhTZF1 also enhanced oxidative stress tolerance, which was determined by measuring the expression of a set of antioxidant genes and SAGs that were altered in transgenic plants during H2O2 treatment. Hence, we conclude that GhTZF1 may serve as a regulator in mediating drought stress tolerance and subsequent leaf senescence by modulating the reactive oxygen species homeostasis. Plant Molecular Biology Springer Journals

GhTZF1 regulates drought stress responses and delays leaf senescence by inhibiting reactive oxygen species accumulation in transgenic Arabidopsis

Loading next page...
Springer Netherlands
Copyright © 2014 by Springer Science+Business Media Dordrecht
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial