GEODIS: towards the optimization of data locality-aware job scheduling in geo-distributed data centers

GEODIS: towards the optimization of data locality-aware job scheduling in geo-distributed data... Today, data-intensive applications rely on geographically distributed systems to leverage data collection, storing and processing. Data locality has been seen as a prominent technique to improve application performance and reduce the impact of network latency by scheduling jobs directly in the nodes hosting the data to be processed. MapReduce and Dryad are examples of frameworks which exploit locality by splitting jobs into multiple tasks that are dispatched to process portions of data locally. However, as the ecosystem of big data analysis has shifted from single clusters to span geo-distributed data centers, it is unavoidable that data may still be transferred through the network in order reduce the schedule length. Nevertheless, there is a lack of mechanism to efficiently blend data locality and inter-data center data transfer requirement in the existing scheduling techniques to address data-intensive processing across dispersed data centers. Therefore, the objective of this work is to propose and solve the makespan optimization problem for data-intensive job scheduling on geo-distributed data centers. To this end, we first formulate the task placement and the data access as a linear programming and use the GLPK solver to solve it. We then present a low complexity heuristic scheduling algorithm called GeoDis which allows data locality to cope with the data transfer requirement to achieve a greater performance on the makespan. The experiments with various realistic traces and synthetic generated workload show that GeoDis can reduce makespan of processing jobs by 44% as compared to the state-of-the-art algorithms and remain within $$91\%$$ 91 % closer to the optimal solution by the LP solver. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computing Springer Journals

GEODIS: towards the optimization of data locality-aware job scheduling in geo-distributed data centers

Loading next page...
 
/lp/springer_journal/geodis-towards-the-optimization-of-data-locality-aware-job-scheduling-hnyONf9xOE
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag GmbH Austria
Subject
Computer Science; Computer Science, general; Information Systems Applications (incl.Internet); Computer Communication Networks; Software Engineering; Artificial Intelligence (incl. Robotics); Computer Appl. in Administrative Data Processing
ISSN
0010-485X
eISSN
1436-5057
D.O.I.
10.1007/s00607-017-0564-7
Publisher site
See Article on Publisher Site

Abstract

Today, data-intensive applications rely on geographically distributed systems to leverage data collection, storing and processing. Data locality has been seen as a prominent technique to improve application performance and reduce the impact of network latency by scheduling jobs directly in the nodes hosting the data to be processed. MapReduce and Dryad are examples of frameworks which exploit locality by splitting jobs into multiple tasks that are dispatched to process portions of data locally. However, as the ecosystem of big data analysis has shifted from single clusters to span geo-distributed data centers, it is unavoidable that data may still be transferred through the network in order reduce the schedule length. Nevertheless, there is a lack of mechanism to efficiently blend data locality and inter-data center data transfer requirement in the existing scheduling techniques to address data-intensive processing across dispersed data centers. Therefore, the objective of this work is to propose and solve the makespan optimization problem for data-intensive job scheduling on geo-distributed data centers. To this end, we first formulate the task placement and the data access as a linear programming and use the GLPK solver to solve it. We then present a low complexity heuristic scheduling algorithm called GeoDis which allows data locality to cope with the data transfer requirement to achieve a greater performance on the makespan. The experiments with various realistic traces and synthetic generated workload show that GeoDis can reduce makespan of processing jobs by 44% as compared to the state-of-the-art algorithms and remain within $$91\%$$ 91 % closer to the optimal solution by the LP solver.

Journal

ComputingSpringer Journals

Published: Jul 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off