Genotypic variation of rice in phosphorus acquisition from iron phosphate: Contributions of root morphology and phosphorus uptake kinetics

Genotypic variation of rice in phosphorus acquisition from iron phosphate: Contributions of root... To elucidate the contributions of rice root morphology and phosphorus uptake kinetics to P uptake by rice from iron phosphate, a sand culture experiment with either sufficient P supply (control treatment, 10 mg P/l as NaH2PO4) or Fe-P as the only source of P (40 mg P/pot as FePO4 × 4H2O) and a solution culture experiment supplied with either sufficient P (10 mg P/l) or deficient P (0.5 mg P/l) were conducted. Eight rice cultivars, which differed in P uptake from Fe-P, were investigated. Plant P uptake, root morphology, and P uptake kinetics were determined. There were significant (P < 0.05) genotypic variations in both plant dry weight and P uptake per plant among eight rice (Oryza sativa L.) cultivars when supplied with Fe-P as the P source. The Fe-P treatment significantly (P < 0.05) decreased plant dry weight, P uptake per plant, and P concentration in plant dry matter of all cultivars in comparison with the control plants. In Fe-P treated plants, significant (P < 0.05) genotypic variation was shown in root morphology, including root length, surface area, volume, and number of lateral roots. The P uptake per plant from Fe-P by rice was significantly (P < 0.05) correlated with root surface area and root volume as well as with the number of lateral roots, suggesting that the ability of rice to absorb P from Fe-P was closely related to root morphology. Low P supply in solution significantly increased the I max (P < 0.05), but significantly decreased the K M (P < 0.05) for P absorption by all rice cultivars. We supposed that kinetic characteristics of root P uptake could not account for the ability of rice to absorb P from Fe-P. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Genotypic variation of rice in phosphorus acquisition from iron phosphate: Contributions of root morphology and phosphorus uptake kinetics

Loading next page...
 
/lp/springer_journal/genotypic-variation-of-rice-in-phosphorus-acquisition-from-iron-yOuLrkkyOS
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2007 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443707020112
Publisher site
See Article on Publisher Site

Abstract

To elucidate the contributions of rice root morphology and phosphorus uptake kinetics to P uptake by rice from iron phosphate, a sand culture experiment with either sufficient P supply (control treatment, 10 mg P/l as NaH2PO4) or Fe-P as the only source of P (40 mg P/pot as FePO4 × 4H2O) and a solution culture experiment supplied with either sufficient P (10 mg P/l) or deficient P (0.5 mg P/l) were conducted. Eight rice cultivars, which differed in P uptake from Fe-P, were investigated. Plant P uptake, root morphology, and P uptake kinetics were determined. There were significant (P < 0.05) genotypic variations in both plant dry weight and P uptake per plant among eight rice (Oryza sativa L.) cultivars when supplied with Fe-P as the P source. The Fe-P treatment significantly (P < 0.05) decreased plant dry weight, P uptake per plant, and P concentration in plant dry matter of all cultivars in comparison with the control plants. In Fe-P treated plants, significant (P < 0.05) genotypic variation was shown in root morphology, including root length, surface area, volume, and number of lateral roots. The P uptake per plant from Fe-P by rice was significantly (P < 0.05) correlated with root surface area and root volume as well as with the number of lateral roots, suggesting that the ability of rice to absorb P from Fe-P was closely related to root morphology. Low P supply in solution significantly increased the I max (P < 0.05), but significantly decreased the K M (P < 0.05) for P absorption by all rice cultivars. We supposed that kinetic characteristics of root P uptake could not account for the ability of rice to absorb P from Fe-P.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Mar 20, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off