Genomic predictions of breeding values in a cloned Eucalyptus globulus population in Chile

Genomic predictions of breeding values in a cloned Eucalyptus globulus population in Chile In Chile, an intensive Eucalyptus globulus clonal selection program is being carried out to increase forest productivity for pulp production. A breeding population was used to investigate the predicted ability of single nucleotide polymorphism (SNP) markers for genomic selection (GS). A total of 310 clones from 53 families were used. Stem volume and wood density were measured on all clones. Trees were genotyped at 12 K polymorphic markers using the EUChip60K genotype array. Genomic best linear unbiased prediction, Bayesian lasso regression, Bayes B, and Bayes C models were used to predict genomic estimated breeding values (GEBV). For cross-validation, 260 individuals were sampled for model training and 50 individuals for model validation, using 2 folds and 10 replications each. The average predictive ability estimates for wood density and stem volume across the models were 0.58 and 0.75, respectively. The average rank correlations were 0.59 and 0.71, respectively. Models produced very similar bias for both traits. When clones were ranked based on their GEBV, models had similar phenotypic mean for the top 10% of the clones. The predicted ability of markers will likely decrease if the models are used to predict GEBV of new material coming from the breeding program, because of a different marker–trait phase introduced by recombination. The results should be validated with larger populations and across two generations before routine applications of GS in E. globulus. We suggest that GS is a viable strategy to accelerate clonal selection program of E. globulus in Chile. Tree Genetics & Genomes Springer Journals

Genomic predictions of breeding values in a cloned Eucalyptus globulus population in Chile

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Life Sciences; Forestry; Plant Genetics & Genomics; Plant Breeding/Biotechnology; Tree Biology; Biotechnology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial