Genomic predictions of breeding values in a cloned Eucalyptus globulus population in Chile

Genomic predictions of breeding values in a cloned Eucalyptus globulus population in Chile In Chile, an intensive Eucalyptus globulus clonal selection program is being carried out to increase forest productivity for pulp production. A breeding population was used to investigate the predicted ability of single nucleotide polymorphism (SNP) markers for genomic selection (GS). A total of 310 clones from 53 families were used. Stem volume and wood density were measured on all clones. Trees were genotyped at 12 K polymorphic markers using the EUChip60K genotype array. Genomic best linear unbiased prediction, Bayesian lasso regression, Bayes B, and Bayes C models were used to predict genomic estimated breeding values (GEBV). For cross-validation, 260 individuals were sampled for model training and 50 individuals for model validation, using 2 folds and 10 replications each. The average predictive ability estimates for wood density and stem volume across the models were 0.58 and 0.75, respectively. The average rank correlations were 0.59 and 0.71, respectively. Models produced very similar bias for both traits. When clones were ranked based on their GEBV, models had similar phenotypic mean for the top 10% of the clones. The predicted ability of markers will likely decrease if the models are used to predict GEBV of new material coming from the breeding program, because of a different marker–trait phase introduced by recombination. The results should be validated with larger populations and across two generations before routine applications of GS in E. globulus. We suggest that GS is a viable strategy to accelerate clonal selection program of E. globulus in Chile. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tree Genetics & Genomes Springer Journals

Genomic predictions of breeding values in a cloned Eucalyptus globulus population in Chile

Loading next page...
 
/lp/springer_journal/genomic-predictions-of-breeding-values-in-a-cloned-eucalyptus-globulus-9092yMcBKp
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Life Sciences; Forestry; Plant Genetics & Genomics; Plant Breeding/Biotechnology; Tree Biology; Biotechnology
ISSN
1614-2942
eISSN
1614-2950
D.O.I.
10.1007/s11295-017-1158-4
Publisher site
See Article on Publisher Site

Abstract

In Chile, an intensive Eucalyptus globulus clonal selection program is being carried out to increase forest productivity for pulp production. A breeding population was used to investigate the predicted ability of single nucleotide polymorphism (SNP) markers for genomic selection (GS). A total of 310 clones from 53 families were used. Stem volume and wood density were measured on all clones. Trees were genotyped at 12 K polymorphic markers using the EUChip60K genotype array. Genomic best linear unbiased prediction, Bayesian lasso regression, Bayes B, and Bayes C models were used to predict genomic estimated breeding values (GEBV). For cross-validation, 260 individuals were sampled for model training and 50 individuals for model validation, using 2 folds and 10 replications each. The average predictive ability estimates for wood density and stem volume across the models were 0.58 and 0.75, respectively. The average rank correlations were 0.59 and 0.71, respectively. Models produced very similar bias for both traits. When clones were ranked based on their GEBV, models had similar phenotypic mean for the top 10% of the clones. The predicted ability of markers will likely decrease if the models are used to predict GEBV of new material coming from the breeding program, because of a different marker–trait phase introduced by recombination. The results should be validated with larger populations and across two generations before routine applications of GS in E. globulus. We suggest that GS is a viable strategy to accelerate clonal selection program of E. globulus in Chile.

Journal

Tree Genetics & GenomesSpringer Journals

Published: Jun 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off