Genomic organization and expression profile of the human and mouse WAVE gene family

Genomic organization and expression profile of the human and mouse WAVE gene family The WAVE gene family, which contains three members, has been shown to play a major role in the actin polymerization and cytoskeleton organization processes. We have identified the WAVE3 gene from Chromosome (Chr) 13q12, as being involved in one of the breakpoints of a t(1:13)(q21:q12) reciprocal translocation, in a patient with ganglioneuroblastoma (Sossey-Alaoui et al. 2002; Oncogene 21: 5967–5974). We have also reported the cloning of the mouse Wave3. During our analysis of the human gene map, we also noted that WAVE2 maps to Chr region lp35-36, which frequently undergoes loss of heterozygosity and deletion in advanced stage neuroblastoma. These data clearly indicate a possible involvement of the WAVE genes in the pathogenesis of neuroblastoma. In this study, we report the complete genomic organization and expression profile of the three human WAVE genes and their mouse orthologs. We show that the WAVE genes have distinctive expression patterns in both adult and fetal human and mouse tissues. We also show a high level of conservation between these genes, in both the nucleotide and protein sequences. We finally show that the genomic structure is highly conserved among these genes and that the mouse Wave genes map to chromosome regions that have synteny in the human genome. The gene content in these syntenic regions is also conserved, suggesting that the WAVE genes are derived from a common ancient ancestor by genome duplication. The genomic characterization and expression analysis of the WAVE genes provide the basis towards understanding the function of these genes. It also provides the first steps towards the development of mouse models for the role of the WAVE genes in actin and cytoskeleton organization in general, and in the development of neuroblastoma in particular. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Genomic organization and expression profile of the human and mouse WAVE gene family

Loading next page...
 
/lp/springer_journal/genomic-organization-and-expression-profile-of-the-human-and-mouse-KYZmubDSOx
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-002-2247-7
Publisher site
See Article on Publisher Site

Abstract

The WAVE gene family, which contains three members, has been shown to play a major role in the actin polymerization and cytoskeleton organization processes. We have identified the WAVE3 gene from Chromosome (Chr) 13q12, as being involved in one of the breakpoints of a t(1:13)(q21:q12) reciprocal translocation, in a patient with ganglioneuroblastoma (Sossey-Alaoui et al. 2002; Oncogene 21: 5967–5974). We have also reported the cloning of the mouse Wave3. During our analysis of the human gene map, we also noted that WAVE2 maps to Chr region lp35-36, which frequently undergoes loss of heterozygosity and deletion in advanced stage neuroblastoma. These data clearly indicate a possible involvement of the WAVE genes in the pathogenesis of neuroblastoma. In this study, we report the complete genomic organization and expression profile of the three human WAVE genes and their mouse orthologs. We show that the WAVE genes have distinctive expression patterns in both adult and fetal human and mouse tissues. We also show a high level of conservation between these genes, in both the nucleotide and protein sequences. We finally show that the genomic structure is highly conserved among these genes and that the mouse Wave genes map to chromosome regions that have synteny in the human genome. The gene content in these syntenic regions is also conserved, suggesting that the WAVE genes are derived from a common ancient ancestor by genome duplication. The genomic characterization and expression analysis of the WAVE genes provide the basis towards understanding the function of these genes. It also provides the first steps towards the development of mouse models for the role of the WAVE genes in actin and cytoskeleton organization in general, and in the development of neuroblastoma in particular.

Journal

Mammalian GenomeSpringer Journals

Published: Sep 2, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off