Genomic organization and analysis of the hairless gene in four hypotrichotic rat strains

Genomic organization and analysis of the hairless gene in four hypotrichotic rat strains More than 25 different hypotrichotic mutations have been described in laboratory rats, yet the molecular basis for these mutations has not been determined for most of these phenotypes. Their similarity to the hairless (hr) mutations described in mice suggests a possible role for the hairless gene in the formation of rat hypotrichotic phenotypes, though whether hr is responsible for these rat phenotypes has yet to be determined. Therefore, in order to understand the basis for the rat hypotrichotic phenotypes and their relationship to the hr gene, we determined the genomic organization of the hr gene and subsequently analyzed the coding sequence in four hypotrichotic rat strains. Analysis revealed that the first two exons of the mouse, monkey, and human hr gene were fused in the rat gene, while the rest of the gene showed strong evolutionary conservation. Despite their designation as “hairless,” no mutations within the coding sequences were identified, indicating that the “hairless” phenotype in all four hypotrichotic rat strains are not allelic with hr. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Genomic organization and analysis of the hairless gene in four hypotrichotic rat strains

Loading next page...
 
/lp/springer_journal/genomic-organization-and-analysis-of-the-hairless-gene-in-four-OmHjYUepsL
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer Science + Business Media Inc.
Subject
Life Sciences; Anatomy; Cell Biology; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-004-2383-3
Publisher site
See Article on Publisher Site

Abstract

More than 25 different hypotrichotic mutations have been described in laboratory rats, yet the molecular basis for these mutations has not been determined for most of these phenotypes. Their similarity to the hairless (hr) mutations described in mice suggests a possible role for the hairless gene in the formation of rat hypotrichotic phenotypes, though whether hr is responsible for these rat phenotypes has yet to be determined. Therefore, in order to understand the basis for the rat hypotrichotic phenotypes and their relationship to the hr gene, we determined the genomic organization of the hr gene and subsequently analyzed the coding sequence in four hypotrichotic rat strains. Analysis revealed that the first two exons of the mouse, monkey, and human hr gene were fused in the rat gene, while the rest of the gene showed strong evolutionary conservation. Despite their designation as “hairless,” no mutations within the coding sequences were identified, indicating that the “hairless” phenotype in all four hypotrichotic rat strains are not allelic with hr.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off