Genomic cloning, chromosomal mapping, and expression analysis of Msal-2

Genomic cloning, chromosomal mapping, and expression analysis of Msal-2 Mutations of SALL1 related to spalt of Drosophila have been found to cause Townes-Brocks syndrome, suggesting a function of SALL1 for the development of anus, limbs, ears, and kidneys. No function is yet known for SALL2, another human spalt-like gene. The structure of SALL2 is different from SALL1 and all other vertebrate spalt-like genes described in mouse, Xenopus, and Medaka, suggesting that SALL2-like genes might also exist in other vertebrates. Consistent with this hypothesis, we isolated and characterized a SALL2 homologous mouse gene, Msal-2. In contrast to other vertebrate spalt-like genes both SALL2 and Msal-2 encode only three double zinc finger domains, the most carboxyterminal of which only distantly resembles spalt-like zinc fingers. The evolutionary conservation of SALL2/Msal-2 suggests that two lines of sal-like genes with presumably different functions arose from an early evolutionary duplication of a common ancestor gene. Msal-2 is expressed throughout embryonic development but also in adult tissues, predominantly in brain. However, the function of SALL2/Msal-2 still needs to be determined. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Genomic cloning, chromosomal mapping, and expression analysis of Msal-2

Loading next page...
 
/lp/springer_journal/genomic-cloning-chromosomal-mapping-and-expression-analysis-of-msal-2-kn83gX6Hwc
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003350010012
Publisher site
See Article on Publisher Site

Abstract

Mutations of SALL1 related to spalt of Drosophila have been found to cause Townes-Brocks syndrome, suggesting a function of SALL1 for the development of anus, limbs, ears, and kidneys. No function is yet known for SALL2, another human spalt-like gene. The structure of SALL2 is different from SALL1 and all other vertebrate spalt-like genes described in mouse, Xenopus, and Medaka, suggesting that SALL2-like genes might also exist in other vertebrates. Consistent with this hypothesis, we isolated and characterized a SALL2 homologous mouse gene, Msal-2. In contrast to other vertebrate spalt-like genes both SALL2 and Msal-2 encode only three double zinc finger domains, the most carboxyterminal of which only distantly resembles spalt-like zinc fingers. The evolutionary conservation of SALL2/Msal-2 suggests that two lines of sal-like genes with presumably different functions arose from an early evolutionary duplication of a common ancestor gene. Msal-2 is expressed throughout embryonic development but also in adult tissues, predominantly in brain. However, the function of SALL2/Msal-2 still needs to be determined.

Journal

Mammalian GenomeSpringer Journals

Published: Feb 27, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off