Genomic Analysis of the 12-oxo-phytodienoic Acid Reductase Gene Family of Zea mays

Genomic Analysis of the 12-oxo-phytodienoic Acid Reductase Gene Family of Zea mays The 12-oxo-phytodienoic acid reductases (OPRs) are enzymes that catalyze the reduction of double bonds adjacent to an oxo group in α,β-unsaturated aldehydes or ketones. Some of them have very high substrate specificity and are part of the octadecanoid pathway which convert linolenic acid to the phytohormone jasmonic acid (JA). Sequencing and analysis of ESTs and genomic sequences from available private and public databases revealed that the maize genome encodes eight OPR genes. Southern blot analysis and mapping of individual OPR genes to maize chromosomes using oat maize chromosome addition lines provides independent confirmation of this number of OPR genes in maize. A survey of massively parallel signature sequencing (MPSS) assays revealed that transcripts of each OPR gene accumulate differentially in diverse organs of maize plants suggesting distinct biological functions. Similarly, RNA blot analysis revealed that distinct OPR genes are differentially regulated in response to stress hormones, wounding or pathogen infection. ZmOPR1 and/or ZmOPR2 appear to function in defense responses to pathogens because they are transiently induced by salicylic acid (SA), chitooligosaccharides, and by infection with Cochliobolus  carbonum, Cochliobolus  heterostrophus and Fusarium  verticillioides, but not by wounding. In contrast to these two genes, transcript levels of ZmOPR6 and ZmOPR7 and/or ZmOPR8 are highly induced by wounding or treatments with the wound-associated signaling molecules JA, ethylene and abscisic acid. However, accumulation of ZmOPR6 and ZmOPR7/8 mRNAs was not upregulated by SA treatments or by pathogen infection suggesting specific involvement in the wound-induced defense responses. None of the treatments induced transcripts of ZmOPR3, 4, or 5. Plant Molecular Biology Springer Journals

Genomic Analysis of the 12-oxo-phytodienoic Acid Reductase Gene Family of Zea mays

Loading next page...
Kluwer Academic Publishers
Copyright © 2005 by Springer
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial