Genomic Analysis of the 12-oxo-phytodienoic Acid Reductase Gene Family of Zea mays

Genomic Analysis of the 12-oxo-phytodienoic Acid Reductase Gene Family of Zea mays The 12-oxo-phytodienoic acid reductases (OPRs) are enzymes that catalyze the reduction of double bonds adjacent to an oxo group in α,β-unsaturated aldehydes or ketones. Some of them have very high substrate specificity and are part of the octadecanoid pathway which convert linolenic acid to the phytohormone jasmonic acid (JA). Sequencing and analysis of ESTs and genomic sequences from available private and public databases revealed that the maize genome encodes eight OPR genes. Southern blot analysis and mapping of individual OPR genes to maize chromosomes using oat maize chromosome addition lines provides independent confirmation of this number of OPR genes in maize. A survey of massively parallel signature sequencing (MPSS) assays revealed that transcripts of each OPR gene accumulate differentially in diverse organs of maize plants suggesting distinct biological functions. Similarly, RNA blot analysis revealed that distinct OPR genes are differentially regulated in response to stress hormones, wounding or pathogen infection. ZmOPR1 and/or ZmOPR2 appear to function in defense responses to pathogens because they are transiently induced by salicylic acid (SA), chitooligosaccharides, and by infection with Cochliobolus  carbonum, Cochliobolus  heterostrophus and Fusarium  verticillioides, but not by wounding. In contrast to these two genes, transcript levels of ZmOPR6 and ZmOPR7 and/or ZmOPR8 are highly induced by wounding or treatments with the wound-associated signaling molecules JA, ethylene and abscisic acid. However, accumulation of ZmOPR6 and ZmOPR7/8 mRNAs was not upregulated by SA treatments or by pathogen infection suggesting specific involvement in the wound-induced defense responses. None of the treatments induced transcripts of ZmOPR3, 4, or 5. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Genomic Analysis of the 12-oxo-phytodienoic Acid Reductase Gene Family of Zea mays

Loading next page...
 
/lp/springer_journal/genomic-analysis-of-the-12-oxo-phytodienoic-acid-reductase-gene-family-I9IpTWKIqA
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-8883-z
Publisher site
See Article on Publisher Site

Abstract

The 12-oxo-phytodienoic acid reductases (OPRs) are enzymes that catalyze the reduction of double bonds adjacent to an oxo group in α,β-unsaturated aldehydes or ketones. Some of them have very high substrate specificity and are part of the octadecanoid pathway which convert linolenic acid to the phytohormone jasmonic acid (JA). Sequencing and analysis of ESTs and genomic sequences from available private and public databases revealed that the maize genome encodes eight OPR genes. Southern blot analysis and mapping of individual OPR genes to maize chromosomes using oat maize chromosome addition lines provides independent confirmation of this number of OPR genes in maize. A survey of massively parallel signature sequencing (MPSS) assays revealed that transcripts of each OPR gene accumulate differentially in diverse organs of maize plants suggesting distinct biological functions. Similarly, RNA blot analysis revealed that distinct OPR genes are differentially regulated in response to stress hormones, wounding or pathogen infection. ZmOPR1 and/or ZmOPR2 appear to function in defense responses to pathogens because they are transiently induced by salicylic acid (SA), chitooligosaccharides, and by infection with Cochliobolus  carbonum, Cochliobolus  heterostrophus and Fusarium  verticillioides, but not by wounding. In contrast to these two genes, transcript levels of ZmOPR6 and ZmOPR7 and/or ZmOPR8 are highly induced by wounding or treatments with the wound-associated signaling molecules JA, ethylene and abscisic acid. However, accumulation of ZmOPR6 and ZmOPR7/8 mRNAs was not upregulated by SA treatments or by pathogen infection suggesting specific involvement in the wound-induced defense responses. None of the treatments induced transcripts of ZmOPR3, 4, or 5.

Journal

Plant Molecular BiologySpringer Journals

Published: Jun 17, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off