Genome-wide profiling of histone H3 lysine 9 acetylation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression

Genome-wide profiling of histone H3 lysine 9 acetylation and dimethylation in Arabidopsis reveals... Lysine residue 9 of histone H3 can either be acetylated or mono-, di-, or tri-methylated. These epigenetic states have a diverse impact on regulating gene transcriptional activity and chromatin organization. H3K9ac is invariably correlated with transcriptional activation, whereas H3K9me2 has been reported to be mainly located in constitutive heterochromatin in Arabidopsis. Here, we present epigenetic landscapes for histone H3 lysine 9 acetylation (H3K9ac) and dimethylation (H3K9me2) in Arabidopsis seedlings. The results show that H3K9ac targeted 5,206 non-transposable element (non-TE) genes and 321 transposable elements (TEs), whereas H3K9me2 targeted 2,281 TEs and 1,112 non-TE genes. H3K9ac was biased towards the 5′ end of genes and peaked at the ATG position, while H3K9me2 tended to span the entire gene body. H3K9ac correlated with high gene expression, while H3K9me2 correlated with low expression. Analyses of H3K9ac and H3K9me2 with the available datasets of H3K27me3 and DNA methylation revealed a correlation between the occurrence of multiple epigenetic modifications and gene expression. Genes with H3K9ac alone were actively transcribed, while genes that were also modified by either H3K27me3 or DNA methylation showed a lower expression level, suggesting that a combination of repressive marks weakened the positive regulatory effect of H3K9ac. Furthermore, we observed a significant increase of the H3K9ac modification level of selected target genes in hda19 (histone deacetylase 19) mutant seedlings, which indicated that HDA19 plays an important role in regulating the level of H3K9ac and thereby influencing the transcriptional activity in young seedlings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Genome-wide profiling of histone H3 lysine 9 acetylation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression

Loading next page...
 
/lp/springer_journal/genome-wide-profiling-of-histone-h3-lysine-9-acetylation-and-YWxixn1n9D
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9594-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial