Genome-wide identification and homeolog-specific expression analysis of the SnRK2 genes in Brassica napus guard cells

Genome-wide identification and homeolog-specific expression analysis of the SnRK2 genes in... Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) proteins constitute a small plant-specific serine/threonine kinase family involved in abscisic acid (ABA) signaling and plant responses to biotic and abiotic stresses. Although SnRK2s have been well-studied in Arabidopsis thaliana, little is known about SnRK2s in Brassica napus. Here we identified 30 putative sequences encoding 10 SnRK2 proteins in the B. napus genome and the expression profiles of a subset of 14 SnRK2 genes in guard cells of B. napus. In agreement with its polyploid origin, B. napus maintains both homeologs from its diploid parents. The results of quantitative real-time PCR (qRT-PCR) and reanalysis of RNA-Seq data showed that certain BnSnRK2 genes were commonly expressed in leaf tissues in different varieties of B. napus. In particular, qRT-PCR results showed that 12 of the 14 BnSnRK2s responded to drought stress in leaves and in ABA-treated guard cells. Among them, BnSnRK2.4 and BnSnRK2.6 were of interest because of their robust responsiveness to ABA treatment and drought stress. Notably, BnSnRK2 genes exhibited up-regulation of different homeologs, particularly in response to abiotic stress. The homeolog expression bias in BnSnRK2 genes suggests that parental origin of genes might be responsible for efficient regulation of stress responses in polyploids. This work has laid a foundation for future functional characterization of the different BnSnKR2 homeologs in B. napus and its parents, especially their functions in guard cell signaling and stress responses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Genome-wide identification and homeolog-specific expression analysis of the SnRK2 genes in Brassica napus guard cells

Loading next page...
 
/lp/springer_journal/genome-wide-identification-and-homeolog-specific-expression-analysis-xeOLI0MKQn
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-016-0456-9
Publisher site
See Article on Publisher Site

Abstract

Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) proteins constitute a small plant-specific serine/threonine kinase family involved in abscisic acid (ABA) signaling and plant responses to biotic and abiotic stresses. Although SnRK2s have been well-studied in Arabidopsis thaliana, little is known about SnRK2s in Brassica napus. Here we identified 30 putative sequences encoding 10 SnRK2 proteins in the B. napus genome and the expression profiles of a subset of 14 SnRK2 genes in guard cells of B. napus. In agreement with its polyploid origin, B. napus maintains both homeologs from its diploid parents. The results of quantitative real-time PCR (qRT-PCR) and reanalysis of RNA-Seq data showed that certain BnSnRK2 genes were commonly expressed in leaf tissues in different varieties of B. napus. In particular, qRT-PCR results showed that 12 of the 14 BnSnRK2s responded to drought stress in leaves and in ABA-treated guard cells. Among them, BnSnRK2.4 and BnSnRK2.6 were of interest because of their robust responsiveness to ABA treatment and drought stress. Notably, BnSnRK2 genes exhibited up-regulation of different homeologs, particularly in response to abiotic stress. The homeolog expression bias in BnSnRK2 genes suggests that parental origin of genes might be responsible for efficient regulation of stress responses in polyploids. This work has laid a foundation for future functional characterization of the different BnSnKR2 homeologs in B. napus and its parents, especially their functions in guard cell signaling and stress responses.

Journal

Plant Molecular BiologySpringer Journals

Published: Feb 22, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off