Genome-wide expression profiles of seasonal bud dormancy at four critical stages in Japanese apricot

Genome-wide expression profiles of seasonal bud dormancy at four critical stages in Japanese apricot Dormancy is one of the most important adaptive mechanisms developed by perennial plants. To reveal the comprehensive mechanism of seasonal bud dormancy at four critical stages in Japanese apricot (Prunus persica), we applied Illumina sequencing to study differentially expressed genes (DEGs) at the transcriptional level. As a result, 19,759, 16,375, 19,749 and 20,800 tag-mapped genes were sequenced from libraries of paradormancy (R1), endodormancy (R2), ecodormancy (R3) and dormancy release (R4) stages based on the P. persica genome. Moreover, 6,199, 5,539, and 5,317 genes were differentially expressed in R1 versus R2, R2 versus R3, and R3 versus R4, respectively. Gene Ontology analysis of dormancy-related genes showed that these were mainly related to the cytoplasm, cytoplasmic part metabolism, intracellular metabolism and membrane-bound organelle metabolism. Pathway-enrichment annotation revealed that highly ranked genes were involved in ribosome pathways and protein processing in the endoplasmic reticulum. The results demonstrated that hormone response genes such as auxin, abscisic acid, ethylene and jasmonic acid, as well as zinc finger family protein genes are possibly involved in seasonal bud dormancy in Japanese apricot. The expression patterns of DEGs were verified using real-time quantitative RT-PCR. These results contribute to further understanding of the mechanism of bud dormancy in Japanese apricot. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Genome-wide expression profiles of seasonal bud dormancy at four critical stages in Japanese apricot

Loading next page...
 
/lp/springer_journal/genome-wide-expression-profiles-of-seasonal-bud-dormancy-at-four-fUPvHys2Ut
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-013-0086-4
Publisher site
See Article on Publisher Site

Abstract

Dormancy is one of the most important adaptive mechanisms developed by perennial plants. To reveal the comprehensive mechanism of seasonal bud dormancy at four critical stages in Japanese apricot (Prunus persica), we applied Illumina sequencing to study differentially expressed genes (DEGs) at the transcriptional level. As a result, 19,759, 16,375, 19,749 and 20,800 tag-mapped genes were sequenced from libraries of paradormancy (R1), endodormancy (R2), ecodormancy (R3) and dormancy release (R4) stages based on the P. persica genome. Moreover, 6,199, 5,539, and 5,317 genes were differentially expressed in R1 versus R2, R2 versus R3, and R3 versus R4, respectively. Gene Ontology analysis of dormancy-related genes showed that these were mainly related to the cytoplasm, cytoplasmic part metabolism, intracellular metabolism and membrane-bound organelle metabolism. Pathway-enrichment annotation revealed that highly ranked genes were involved in ribosome pathways and protein processing in the endoplasmic reticulum. The results demonstrated that hormone response genes such as auxin, abscisic acid, ethylene and jasmonic acid, as well as zinc finger family protein genes are possibly involved in seasonal bud dormancy in Japanese apricot. The expression patterns of DEGs were verified using real-time quantitative RT-PCR. These results contribute to further understanding of the mechanism of bud dormancy in Japanese apricot.

Journal

Plant Molecular BiologySpringer Journals

Published: Jun 12, 2013

References

  • Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation
    Bielenberg, DG; Wang, Y; Li, Z; Zhebentyayeva, T; Fan, S; Reighard, GL; Scorza, R; Abbott, AG
  • Dormancy in potato tuber meristems: chemically induced cessation in dormancy matches the natural process based on transcript profiles
    Campbell, M; Segear, E; Beers, L; Knauber, D; Suttle, J
  • Molecular genetic analysis of dormancy-related traits in poplars
    Chen, THH; Howe, GT; Bradshaw, HD
  • The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms
    Cook, JEK; Eriksson, ME; Junttila, O

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off