Genome-Wide Association Study Reveals Multiple Novel QTL Associated with Low Oxygen Tolerance in Hybrid Catfish

Genome-Wide Association Study Reveals Multiple Novel QTL Associated with Low Oxygen Tolerance in... Hypoxic condition is common in aquaculture, leading to major economic losses. Genetic analysis of hypoxia tolerance, therefore, is not only scientifically significant, but also economically important. Catfish is generally regarded as being highly tolerant to low dissolved oxygen, but variations exist among various populations, strains, and species. In this study, we conducted a genome-wide association study (GWAS) using the catfish 250 K SNP array to identify quantitative trait locus (QTL) associated with tolerance to low dissolved oxygen in the channel catfish × blue catfish interspecific system. Four linkage groups (LG2, LG4, LG23, and LG29) were found to be associated with low oxygen tolerance in hybrid catfish. Multiple significant SNPs were found to be physically linked in genomic regions containing significant QTL for low oxygen tolerance on LG2 and LG23, and in those regions containing suggestively significant QTL on LG2, LG4, LG23, and LG29, suggesting that the physically linked SNPs were genuinely segregating and related with low oxygen tolerance. Analysis of genes within the associated genomic regions suggested that many of these genes were involved in VEGF, MAPK, mTOR, PI3K-Akt, P53-mediated apoptosis, and DNA damage checkpoint pathways. Comparative analysis indicated that most of the QTL at the species level, as analyzed by using the interspecific system, did not overlap with those identified from six strains of channel catfish, confirming the complexity of the genetic architecture of hypoxia tolerance in catfish. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Marine Biotechnology Springer Journals

Genome-Wide Association Study Reveals Multiple Novel QTL Associated with Low Oxygen Tolerance in Hybrid Catfish

Loading next page...
 
/lp/springer_journal/genome-wide-association-study-reveals-multiple-novel-qtl-associated-Yxrt8zBAMc
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Life Sciences; Freshwater & Marine Ecology; Microbiology; Zoology; Engineering, general
ISSN
1436-2228
eISSN
1436-2236
D.O.I.
10.1007/s10126-017-9757-5
Publisher site
See Article on Publisher Site

Abstract

Hypoxic condition is common in aquaculture, leading to major economic losses. Genetic analysis of hypoxia tolerance, therefore, is not only scientifically significant, but also economically important. Catfish is generally regarded as being highly tolerant to low dissolved oxygen, but variations exist among various populations, strains, and species. In this study, we conducted a genome-wide association study (GWAS) using the catfish 250 K SNP array to identify quantitative trait locus (QTL) associated with tolerance to low dissolved oxygen in the channel catfish × blue catfish interspecific system. Four linkage groups (LG2, LG4, LG23, and LG29) were found to be associated with low oxygen tolerance in hybrid catfish. Multiple significant SNPs were found to be physically linked in genomic regions containing significant QTL for low oxygen tolerance on LG2 and LG23, and in those regions containing suggestively significant QTL on LG2, LG4, LG23, and LG29, suggesting that the physically linked SNPs were genuinely segregating and related with low oxygen tolerance. Analysis of genes within the associated genomic regions suggested that many of these genes were involved in VEGF, MAPK, mTOR, PI3K-Akt, P53-mediated apoptosis, and DNA damage checkpoint pathways. Comparative analysis indicated that most of the QTL at the species level, as analyzed by using the interspecific system, did not overlap with those identified from six strains of channel catfish, confirming the complexity of the genetic architecture of hypoxia tolerance in catfish.

Journal

Marine BiotechnologySpringer Journals

Published: Jun 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off