Genome-Wide Analysis of the GRAS Gene Family in Rice and Arabidopsis

Genome-Wide Analysis of the GRAS Gene Family in Rice and Arabidopsis Members of the GRAS gene family encode transcriptional regulators that have diverse functions in plant growth and development such as gibberellin signal transduction, root radial patterning, axillary meristem formation, phytochrome A signal transduction, and gametogenesis. Bioinformatic analysis identified 57 and 32 GRAS genes in rice and Arabidopsis, respectively. Here, we provide a complete overview of this gene family, describing the gene structure, gene expression, chromosome localization, protein motif organization, phylogenetic analysis, and comparative analysis between rice and Arabidopsis. Phylogenetic analysis divides the GRAS gene family into eight subfamilies, which have distinct conserved domains and functions. Both genome/segmental duplication and tandem duplication contributed to the expansion of the GRAS gene family in the rice and Arabidopsis genomes. The existence of GRAS-like genes in bryophytes suggests that GRAS is an ancient family of transcription factors, which arose before the appearance of land plants over 400 million years ago. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Genome-Wide Analysis of the GRAS Gene Family in Rice and Arabidopsis

Loading next page...
 
/lp/springer_journal/genome-wide-analysis-of-the-gras-gene-family-in-rice-and-arabidopsis-qshHx2v34B
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/B:PLAN.0000038256.89809.57
Publisher site
See Article on Publisher Site

Abstract

Members of the GRAS gene family encode transcriptional regulators that have diverse functions in plant growth and development such as gibberellin signal transduction, root radial patterning, axillary meristem formation, phytochrome A signal transduction, and gametogenesis. Bioinformatic analysis identified 57 and 32 GRAS genes in rice and Arabidopsis, respectively. Here, we provide a complete overview of this gene family, describing the gene structure, gene expression, chromosome localization, protein motif organization, phylogenetic analysis, and comparative analysis between rice and Arabidopsis. Phylogenetic analysis divides the GRAS gene family into eight subfamilies, which have distinct conserved domains and functions. Both genome/segmental duplication and tandem duplication contributed to the expansion of the GRAS gene family in the rice and Arabidopsis genomes. The existence of GRAS-like genes in bryophytes suggests that GRAS is an ancient family of transcription factors, which arose before the appearance of land plants over 400 million years ago.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 12, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off