Genome-wide analysis of the beta-glucosidase gene family in maize (Zea mays L. var B73)

Genome-wide analysis of the beta-glucosidase gene family in maize (Zea mays L. var B73) The hydrolysis of beta-d-glucosidic bonds which is required for the liberation of many physiologically important compounds is catalyzed by the enzyme beta-glucosidase (BGLU, EC BGLUs are implicated in several processes in plants, such as the timely response to biotic and abiotic stresses through activation of phytohormones and defense compounds. We identified 26 BGLU isozymes in the genome of the maize inbred B73 and propose a standardized nomenclature for all Zea mays BGLU paralogs (Zmbglu1-Zmbglu26). We characterized their intron–exon structure, protein features, phylogenetic relationships, and measured their expression and activity in various tissues under different environmental conditions. Sequence alignments revealed some characteristic motifs (conserved amino acids) and specific differences among different isozymes. Analysis of putative signal peptides suggested that some BGLUs are plastidic, whereas others are mitochondrial, cytosolic, vacuolar or secreted. Microarray and RT–PCR analysis showed that each member of the Zmbglu family had a characteristic expression pattern with regard to tissue specificity and response to different abiotic conditions. The source of variance for gene expression was highest for the type of organ analyzed (tissue variance) than for the growth conditions (environmental variance) or genotype (genetic variance). Analysis of promoter sequences revealed that each Zmbglu paralog possesses a distinct set of cis elements and transcription factor binding sites. Since there are no two Zmbglu paralogs that have identical molecular properties, we conclude that gene subfunctionalization in maize occurs much more rapidly than gene duplication. Plant Molecular Biology Springer Journals

Genome-wide analysis of the beta-glucosidase gene family in maize (Zea mays L. var B73)

Loading next page...
Springer Netherlands
Copyright © 2011 by Springer Science+Business Media B.V.
Life Sciences; Plant Pathology; Plant Sciences; Biochemistry, general
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial