Genome-wide analysis of gene expression in soybean shoot apical meristem

Genome-wide analysis of gene expression in soybean shoot apical meristem The shoot apical meristem (SAM) contains undifferentiated stem cells that are responsible for the initiation of above-ground organs. The nature of genetic programs and the regulatory networks underlying SAM function in a major legume crop, soybean was investigated here. We used soybean GeneChip® (containing 37,744 probe sets) to examine the transcript profiles associated with micro-dissected, actively growing SAMs or growth arrested axillary meristems (AMs) experiencing apical dominance, in comparison to that of non-meristem (NM) tissue. A total of 1,090 and 1,523 transcripts were identified to be significantly up- or down-regulated in the SAM in comparison to the NM. RT-PCR and in situ hybridization analysis were also carried out to verify the experimental approach. The resulting gene expression profiles point to the combinatorial role of diverse regulatory pathways including those associated with cell division and proliferation, epigenetic regulation, auxin-mediated responses and microRNA regulation in meristem function. In situ hybridization analysis on selected transcripts has implicated their roles in SAM maintenance and the establishment of organ polarity. We also identified a gene, ANGUSITFOLIA3 that could potentially serve as a novel marker for differentiating cells in the meristem. Computational analysis on the promoter regions of Arabidopsis thaliana orthologs of genes with high expression in the soybean SAM revealed a conserved over-representation of three cis-acting regulatory motifs. Our data show that plant meristems possess a unique transcriptional profile, with shared “molecular signatures” in apical and axillary meristems providing a rich source of novel target genes for further studies into a fundamental process that impacts plant growth and crop productivity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Genome-wide analysis of gene expression in soybean shoot apical meristem

Loading next page...
 
/lp/springer_journal/genome-wide-analysis-of-gene-expression-in-soybean-shoot-apical-3WhvUlGJqw
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9450-1
Publisher site
See Article on Publisher Site

Abstract

The shoot apical meristem (SAM) contains undifferentiated stem cells that are responsible for the initiation of above-ground organs. The nature of genetic programs and the regulatory networks underlying SAM function in a major legume crop, soybean was investigated here. We used soybean GeneChip® (containing 37,744 probe sets) to examine the transcript profiles associated with micro-dissected, actively growing SAMs or growth arrested axillary meristems (AMs) experiencing apical dominance, in comparison to that of non-meristem (NM) tissue. A total of 1,090 and 1,523 transcripts were identified to be significantly up- or down-regulated in the SAM in comparison to the NM. RT-PCR and in situ hybridization analysis were also carried out to verify the experimental approach. The resulting gene expression profiles point to the combinatorial role of diverse regulatory pathways including those associated with cell division and proliferation, epigenetic regulation, auxin-mediated responses and microRNA regulation in meristem function. In situ hybridization analysis on selected transcripts has implicated their roles in SAM maintenance and the establishment of organ polarity. We also identified a gene, ANGUSITFOLIA3 that could potentially serve as a novel marker for differentiating cells in the meristem. Computational analysis on the promoter regions of Arabidopsis thaliana orthologs of genes with high expression in the soybean SAM revealed a conserved over-representation of three cis-acting regulatory motifs. Our data show that plant meristems possess a unique transcriptional profile, with shared “molecular signatures” in apical and axillary meristems providing a rich source of novel target genes for further studies into a fundamental process that impacts plant growth and crop productivity.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 30, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off