Genome-wide allele-specific expression analysis using Massively Parallel Signature Sequencing (MPSS™) Reveals cis- and trans-effects on gene expression in maize hybrid meristem tissue

Genome-wide allele-specific expression analysis using Massively Parallel Signature Sequencing... Allelic differences in expression are important genetic factors contributing to quantitative trait variation in various organisms. However, the extent of genome-wide allele-specific expression by different modes of gene regulation has not been well characterized in plants. In this study we developed a new methodology for allele-specific expression analysis by applying Massively Parallel Signature Sequencing (MPSS™), an open ended and sequencing based mRNA profiling technology. This methodology enabled a genome-wide evaluation of cis- and trans-effects on allelic expression in six meristem stages of the maize hybrid. Summarization of data from nearly 400 pairs of MPSS allelic signature tags showed that 60% of the genes in the hybrid meristems exhibited differential allelic expression. Because both alleles are subjected to the same trans-acting factors in the hybrid, the data suggest the abundance of cis-regulatory differences in the genome. Comparing the same allele expressed in the hybrid versus its inbred parents showed that 40% of the genes were differentially expressed, suggesting different trans-acting effects present in different genotypes. Such trans-acting effects may result in gene expression in the hybrid different from allelic additive expression. With this approach we quantified gene expression in the hybrid relative to its inbred parents at the allele-specific level. As compared to measuring total transcript levels, this study provides a new level of understanding of different modes of gene regulation in the hybrid and the molecular basis of heterosis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Genome-wide allele-specific expression analysis using Massively Parallel Signature Sequencing (MPSS™) Reveals cis- and trans-effects on gene expression in maize hybrid meristem tissue

Loading next page...
 
/lp/springer_journal/genome-wide-allele-specific-expression-analysis-using-massively-gwPqD00KTa
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9290-z
Publisher site
See Article on Publisher Site

Abstract

Allelic differences in expression are important genetic factors contributing to quantitative trait variation in various organisms. However, the extent of genome-wide allele-specific expression by different modes of gene regulation has not been well characterized in plants. In this study we developed a new methodology for allele-specific expression analysis by applying Massively Parallel Signature Sequencing (MPSS™), an open ended and sequencing based mRNA profiling technology. This methodology enabled a genome-wide evaluation of cis- and trans-effects on allelic expression in six meristem stages of the maize hybrid. Summarization of data from nearly 400 pairs of MPSS allelic signature tags showed that 60% of the genes in the hybrid meristems exhibited differential allelic expression. Because both alleles are subjected to the same trans-acting factors in the hybrid, the data suggest the abundance of cis-regulatory differences in the genome. Comparing the same allele expressed in the hybrid versus its inbred parents showed that 40% of the genes were differentially expressed, suggesting different trans-acting effects present in different genotypes. Such trans-acting effects may result in gene expression in the hybrid different from allelic additive expression. With this approach we quantified gene expression in the hybrid relative to its inbred parents at the allele-specific level. As compared to measuring total transcript levels, this study provides a new level of understanding of different modes of gene regulation in the hybrid and the molecular basis of heterosis.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 26, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off